999 resultados para Cell diffusivity
Resumo:
Cells respond to various biochemical and physical cues during wound–healing and tumour progression. In vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour–like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound–like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time–evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.
Resumo:
Background: Standard methods for quantifying IncuCyte ZOOM™ assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM™ images to the solution of the Fisher-Kolmogorov model. Results: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM™ assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM™ assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. Conclusions: Our approach for estimating D, λ and K from an IncuCyte ZOOM™ assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.
Resumo:
Background The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. Results We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, ?, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and ?. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D = 161 - 243 ?m2 hour-1, q = 0.3 - 0.5 (low to moderate strength) and ? = 0.0305 - 0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. Conclusions Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.
Resumo:
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher’s equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ.
Resumo:
Most mathematical models of collective cell spreading make the standard assumption that the cell diffusivity and cell proliferation rate are constants that do not vary across the cell population. Here we present a combined experimental and mathematical modeling study which aims to investigate how differences in the cell diffusivity and cell proliferation rate amongst a population of cells can impact the collective behavior of the population. We present data from a three–dimensional transwell migration assay which suggests that the cell diffusivity of some groups of cells within the population can be as much as three times higher than the cell diffusivity of other groups of cells within the population. Using this information, we explore the consequences of explicitly representing this variability in a mathematical model of a scratch assay where we treat the total population of cells as two, possibly distinct, subpopulations. Our results show that when we make the standard assumption that all cells within the population behave identically we observe the formation of moving fronts of cells where both subpopulations are well–mixed and indistinguishable. In contrast, when we consider the same system where the two subpopulations are distinct, we observe a very different outcome where the spreading population becomes spatially organized with the more motile subpopulation dominating at the leading edge while the less motile subpopulation is practically absent from the leading edge. These modeling predictions are consistent with previous experimental observations and suggest that standard mathematical approaches, where we treat the cell diffusivity and cell proliferation rate as constants, might not be appropriate.
Resumo:
Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity $D$, and the cell proliferation rate �$\lambda$. Scratch assays are a commonly-reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched and the motion of the front is monitored over a short period of time, often less than 24 hours. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Leading edge data is very convenient since, unlike other methods, it is nondestructive and does not require labeling, tracking or counting individual cells amongst the population. In this work we study short time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allows us to reliably identify $D$ and $\lambda$�. Using a naıve calibration approach where we simply scan the relevant region of the ($D$;$\lambda$�) parameter space, we show that there are many choices of $D$ and $\lambda$� for which our model produces indistinguishable short time leading edge data. Therefore, without due care, it is impossible to estimate $D$ and $\lambda$� from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information we divide the duration of the experiment into two periods, and we estimate $D$ using data from the first period, while we estimate �$\lambda$ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of $D$ and $\lamdba$� that are consistent with previously-reported values except that that our approach is fast, inexpensive, nondestructive and avoids the need for cell labeling and cell counting.
Resumo:
Quantifying the impact of biochemical compounds on collective cell spreading is an essential element of drug design, with various applications including developing treatments for chronic wounds and cancer. Scratch assays are a technically simple and inexpensive method used to study collective cell spreading; however, most previous interpretations of scratch assays are qualitative and do not provide estimates of the cell diffusivity, D, or the cell proliferation rate,l. Estimating D and l is important for investigating the efficacy of a potential treatment and provides insight into the mechanism through which the potential treatment acts. While a few methods for estimating D and l have been proposed, these previous methods lead to point estimates of D and l, and provide no insight into the uncertainty in these estimates. Here, we compare various types of information that can be extracted from images of a scratch assay, and quantify D and l using discrete computational simulations and approximate Bayesian computation. We show that it is possible to robustly recover estimates of D and l from synthetic data, as well as a new set of experimental data. For the first time, our approach also provides a method to estimate the uncertainty in our estimates of D and l. We anticipate that our approach can be generalized to deal with more realistic experimental scenarios in which we are interested in estimating D and l, as well as additional relevant parameters such as the strength of cell-to-cell adhesion or the strength of cell-to-substrate adhesion.
Resumo:
Scratch assays are difficult to reproduce. Here we identify a previously overlooked source of variability which could partially explain this difficulty. We analyse a suite of scratch assays in which we vary the initial degree of confluence (initial cell density). Our results indicate that the rate of re-colonisation is very sensitive to the initial density. To quantify the relative roles of cell migration and proliferation, we calibrate the solution of the Fisher–Kolmogorov model to cell density profiles to provide estimates of the cell diffusivity, D, and the cell proliferation rate, λ. This procedure indicates that the estimates of D and λ are very sensitive to the initial density. This dependence suggests that the Fisher–Kolmogorov model does not accurately represent the details of the collective cell spreading process, since this model assumes that D and λ are constants that ought to be independent of the initial density. Since higher initial cell density leads to enhanced spreading, we also calibrate the solution of the Porous–Fisher model to the data as this model assumes that the cell flux is an increasing function of the cell density. Estimates of D and λ associated with the Porous–Fisher model are less sensitive to the initial density, suggesting that the Porous–Fisher model provides a better description of the experiments.
Resumo:
An open cell configuration has been employed for the photoacoustic measurement of the thermal diffusivity of undoped Bi2Se3 crystals and Bi2Se3 crystals doped with various concentrations of Te. The amplitude of the photoacoustic signal obtained under heat transmission configuration as a function of chopping frequency is used to evaluate the numerical value of thermal diffusivity, α. Doped samples show a substantial reduction in the value of α compared to undoped samples. The variations in the thermal diffusivity of the doped samples are explained in terms of the phonon assisted heat transfer mechanism. It is seen that α is very sensitive to structural variations arising from doping. The experimentally observed results are correlated with X-ray diffraction studies.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multi-scale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (pme). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the pme to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.
Resumo:
BACKGROUND Hydrogel-based cell cultures are excellent tools for studying physiological events occurring in the growth and proliferation of cells, including cancer cells. Diffusion magnetic resonance is a physical technique that has been widely used for the characterisation of biological systems as well as hydrogels. In this work, we applied diffusion magnetic resonance imaging (MRI) to hydrogel-based cultures of human ovarian cancer cells. METHODS Diffusion-weighted spin-echo MRI measurements were used to obtain spatially-resolved maps of apparent diffusivities for hydrogel samples with different compositions, cell loads and drug (Taxol) treatment regimes. The samples were then characterised using their diffusivity histograms, mean diffusivities and the respective standard deviations, and pairwise Mann-Whitney tests. The elastic moduli of the samples were determined using mechanical compression testing. RESULTS The mean apparent diffusivity of the hydrogels was sensitive to the polymer content, cell load and Taxol treatment. For a given sample composition, the mean apparent diffusivity and the elastic modulus of the hydrogels exhibited a negative correlation. CONCLUSIONS Diffusivity of hydrogel-based cancer cell culture constructs is sensitive to both cell proliferation and Taxol treatment. This suggests that diffusion-weighted imaging is a promising technique for non-invasive monitoring of cancer cell proliferation in hydrogel-based, cellularly-sparse 3D cell cultures. The negative correlation between mean apparent diffusivity and elastic modulus suggests that the diffusion coefficient is indicative of the average density of the physical microenvironment within the hydrogel construct.
Resumo:
A mathematical model describing the dynamics of mammalian cell growth in hollow fibre bioreactor operated in closed shell mode is developed. Mammalian cells are assumed to grow as an expanding biofilm in the extra-capillary space surrounding the fibre. Diffusion is assumed to be the dominant process in the radial direction while axial convection dominates in the lumen of the bioreactor. The transient simulation results show that steep gradients in the cell number are possible under the condition of substrate limitation. The precise conditions which result in nonuniform growth of cells along the length of the bioreactor are delineated. The effect of various operating conditions, such as substrate feed rate, length of the bioreactor and diffusivity of substrate in different regions of the bioreactor, on the bioreactor performance are evaluated in terms of time required to attain the steady-state. The rime of growth is introduced as a measure of effectiveness factor for the bioreactor and is found to be dependent on two parameters, a modified Peclet number and a Thiele modulus. Diffusion, reaction and/or convection control regimes are identified based on these two parameters. The model is further extended to include dual substrate growth limitations, and the relative growth limiting characteristics of two substrates are evaluated. (C) 1997 Elsevier Science Ltd.