961 resultados para Cell adhesion gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dairy intake, despite its high saturated fatty acid (SFA) content, is associated with a lower risk of cardiovascular disease and diabetes. This in vitro study determined the effect of individual fatty acids (FA) found in dairy, and FA mixtures representative of a high SFA and a low SFA dairy lipid on markers of endothelial function in healthy and type II diabetic aortic endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell differentiation and pattern formation are fundamental processes in animal development that are under intense investigation. The mouse retina is a good model to study these processes because it has seven distinct cell types, and three well-laminated nuclear layers that form during embryonic and postnatal life. β-catenin functions as both the nuclear effector for the canonical Wnt pathway and a cell adhesion molecule, and is required for the development of various organs. To study the function of β-catenin in retinal development, I used a Cre-loxP system to conditionally ablate β-catenin in the developing retina. Deletion of β-catenin led to disrupted laminar structure but did not affect the differentiation of any of the seven cell types. Eliminating β-catenin did not reduce progenitor cell proliferation, although enhanced apoptosis was observed. Further analysis showed that disruption of cell adhesion was the major cause of the observed patterning defects. Overexpression of β-catenin during retinal development also disrupted the normal retinal lamination and caused a transdifferentiation of neurons into pigmented cells. The results indicate that β-catenin functions as a cell adhesion molecule but not as a Wnt pathway component during retinal neurogenesis, and is essential for lamination but not cell differentiation. The results further imply that retinal lamination and cell differentiation are genetically separable processes. ^ Sonic hedgehog (shh) is expressed in retinal ganglion cells under the control of transcription factor Pou4f2 during retinal development. Previous studies identified a phylogenetically conserved region in the first intron of shh containing a Pou4f2 binding site. Transgenic reporter mice in which reporter gene expression was driven by this region showed that this element can direct gene expression specifically in the retina, but expression was not limited to the ganglion cells. From these data I hypothesized that this element is required for shh expression in the retina but is not sufficient for specific ganglion cell expression. To further test this hypothesis, I created a conditional allele by flanking this region with two loxP sites. Lines carrying this allele will be crossed with retinal-specific Cre lines to remove this element in the retina. My hypothesis predicts that alteration in shh expression and subsequent retinal defects will occur in the retinas of these mice. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of β-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decreased nitric oxide (NO) activity, the formation of reactive oxygen species, and increased endothelial expression of the redox-sensitive vascular cell adhesion molecule 1 (VCAM-1) gene in the vessel wall are early and characteristic features of atherosclerosis. To explore whether these phenomena are functionally interrelated, we tested the hypothesis that redox-sensitive VCAM-1 gene expression is regulated by a NO-sensitive mechanism. In early passaged human umbilical vein endothelial cells and human dermal microvascular endothelial cells, the NO donor diethylamine-NO (DETA-NO, 100 microM) reduced VCAM-1 gene expression induced by the cytokine tumor necrosis factor alpha (TNF-alpha, 100 units/ml) at the cell surface level by 65% and intracellular adhesion molecule 1 (ICAM-1) gene expression by 35%. E-selectin gene expression was not affected. No effect on expression of cell adhesion molecules was observed with DETA alone. Moreover, DETA-NO suppressed TNF-alpha-induced mRNA accumulation of VCAM-1 and TNF-alpha-mediated transcriptional activation of the human VCAM-1 promoter. Conversely, treatment with NG-monomethyl-L-arginine (L-NMMA, 1 mM), an inhibitor of NO synthesis, augmented cytokine induction of VCAM-1 and ICAM-1 mRNA accumulation. By gel mobility shift analysis, DETA-NO inhibited TNF-alpha activation of DNA binding protein activity to the VCAM-1 NF-kappa B like binding sites. Peroxy-fatty acids such as 13-hydroperoxydodecanoeic acid (linoleyl hydroperoxide) may serve as an intracellular signal for NF-kappa B activation. Using thin layer chromatography, DETA-NO (100 microM) suppressed formation of this metabolite, suggesting that DETA-NO modifies the reactivity of oxygen intermediates in the vascular endothelium. Through this mechanism, NO may function as an immunomodulator of the vessel wall and thus mediate inflammatory events involved in the pathogenesis of atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During development of the vertebrate nervous system, the neural cell adhesion molecule (N-CAM) is expressed in a defined spatiotemporal pattern. We have proposed that the expression of N-CAM is controlled, in part, by proteins encoded by homeobox genes. This hypothesis has been supported by previous in vitro experiments showing that products of homeobox genes can both bind to and transactivate the N-CAM promoter via two homeodomain binding sites, HBS-I and HBS-II. We have now tested the hypothesis that the N-CAM gene is a target of homeodomain proteins in vivo by using transgenic mice containing native and mutated N-CAM promoter constructs linked to a beta-galactosidase reporter gene. Segments of the 5' flanking region of the mouse N-CAM gene were sufficient to direct expression of the reporter gene in the central nervous system in a pattern consistent with that of the endogenous N-CAM gene. For example, at embryonic day (E) 11, beta-galactosidase staining was found in postmitotic neurons in dorsolateral and ventrolateral regions of the spinal cord; at E14.5, staining was seen in these neurons throughout the spinal cord. In contrast, mice carrying an N-CAM promoter-reporter construct with mutations in both homeodomain binding sites (HBS-I and HBS-II) showed altered expression patterns in the spinal cord. At E11, beta-galactosidase expression was seen in the ventrolateral spinal cord, but was absent in the dorsolateral areas, and at E 14.5, beta-galactosidase expression was no longer detected in any cells of the cord. Homeodomain binding sites found in the N-CAM promoter thus appear to be important in determining specific expression patterns of N-CAM along the dorsoventral axis in the developing spinal cord. These experiments suggest that the N-CAM gene is an in vivo target of homeobox gene products in vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) is involved in trafficking of lymphocytes to mucosal endothelium. Expression of MAdCAM-1 is induced in the murine endothelial cell line bEnd.3 by tumor necrosis factor alpha (TNF-alpha), interleukin 1, and bacterial lipopolysaccharide. Here we show that TNF-alpha enhances expression of a firefly luciferase reporter directed by the MAdCAM-1 promoter, confirming transcriptional regulation of MAdCAM-1. Mutational analysis of the promoter indicates that a DNA fragment extending from nt -132 to nt +6 of the gene is sufficient for TNF-alpha inducibility. Two regulatory sites critical for TNF-alpha induction were identified in this region. DNA-binding experiments demonstrate that NF-kappa B proteins from nuclear extracts of TNF-alpha-stimulated bEnd.3 cells bind to these sites, and transfection assays with promoter mutants of the MAdCAM-1 gene indicate that occupancy of both sites is essential for promoter function. The predominant NF-kappa B binding activity detected with these nuclear extracts is a p65 homodimer. These findings establish that, as with other endothelial cell adhesion molecules, transcriptional induction of MAdCAM-1 by TNF-alpha requires activated NF-kappa B proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gastric cancer is a major cause of global cancer mortality. We surveyed the spectrum of somatic alterations in gastric cancer by sequencing the exomes of 15 gastric adenocarcinomas and their matched normal DNAs. Frequently mutated genes in the adenocarcinomas included TP53 (11/15 tumors), PIK3CA (3/15) and ARID1A (3/15). Cell adhesion was the most enriched biological pathway among the frequently mutated genes. A prevalence screening confirmed mutations in FAT4, a cadherin family gene, in 5% of gastric cancers (6/110) and FAT4 genomic deletions in 4% (3/83) of gastric tumors. Frequent mutations in chromatin remodeling genes (ARID1A, MLL3 and MLL) also occurred in 47% of the gastric cancers. We detected ARID1A mutations in 8% of tumors (9/110), which were associated with concurrent PIK3CA mutations and microsatellite instability. In functional assays, we observed both FAT4 and ARID1A to exert tumor-suppressor activity. Somatic inactivation of FAT4 and ARID1A may thus be key tumorigenic events in a subset of gastric cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, beingsignificantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilizing both the TET-OFF and TET-ON systems in combination with transcriptional control elements of the Tie-2 gene, we have established a series of transgenic activator and responder mice for TET-regulated endothelial cell-specific transgene expression in double transgenic mouse embryos and in adult mice. TET-regulated expression of LacZ reporter genes could be achieved in virtually all endothelia in mid gestation stage mouse embryos. In contrast in adult mice, using the very same Tie-2 tTA activator mouse strain, we observed striking differences of TET-induced gene expression from various inducible expression constructs in different vascular beds. Non-endothelial expression was never detected. The prominent differences in completeness of TET-induced endothelial expression highlight the still underestimated critical role of the responder mouse lines for uniform TET-induced gene expression in heterogeneous cell populations such as endothelial cells. Interestingly, in double transgenic mice inducibly expressing several different adhesion molecules, no adverse effects were observed even though these proteins were robustly expressed on endothelial cells in adult tissues. These transgenic model systems provide versatile tools for the TET-regulated manipulation of endothelial cell-specific gene expression in the entire embryonic vasculature and distinct vascular beds in adult mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Band 4.1B is a cytoskeletal adaptor protein that regulates various cellular behavior; however, the mechanisms by which Band 4.1B contributes to intracellular signaling are unclear. This project addresses in vivo and in vitro functions for Band 4.1B in integrin-mediated cell adhesion and signaling. Band 4.1B has been shown to bind to β8 integrin, although cooperative functions of these two proteins have not been determined. Here, functional links between β8 integrin and Band 4.1B were investigated using gene knockout strategies. Ablation of β8 integrin and Band 4.1B genes resulted in impaired cardiac morphogenesis, leading to embryonic lethality by E11.5. These embryos displayed malformation of the outflow tract that was likely linked to abnormal regulation of cardiac neural crest migration. These data indicate the importance of cooperative signaling between β8 integrin and Band 4.1B in cardiac development. The involvement of Band 4.1B in integrin-mediated cell adhesion and signaling was further demonstrated by studying its functional roles in vitro. Band 4.1B is highly expressed in the brain, but its signaling in astrocytes is not understood. Here, Band 4.1B was shown to promote cell spreading likely by interacting with β1 integrin via its band 4.1, ezrin, radixin, and moesin (FERM) domain in cell adhesions. In astrocytes, both Band 4.1B and β1 integrin were expressed in cell-ECM contact sites during early cell spreading. Exogenous expression of Band 4.1B, especially its FERM domain, enhanced cell spreading on fibronectin, an ECM ligand for β1 integrin. However, the increased cell spreading was prohibited by blocking β1 integrin. These findings suggest that Band 4.1B is crucial for early adhesion assembly and/or signaling that are mediated by β1 integrin. Collectively, this study was the first to establish Band 4.1B as a modulator of integrin-mediated adhesion and signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p53 transcription factor is a tumor suppressor and a master regulator of apoptosis and the cell cycle in response to cell stress. In some advanced tumors, such as prostate cancers, the loss of p53 correlates with an increase in the occurrence of metastases. In addition, several groups have suggested that p53 status correlates with changes in cell migration and cell morphology associated with a migratory phenotype. Others have identified several genes with roles in cell migration that are directly transcriptionally regulated by p53. Even so, modulation of cell migration is not widely recognized as a p53 stress response. ^ In an effort to identify novel p53 target genes and expand our knowledge of the p53 transcriptional response, we performed Affymetrix gene expression analysis in p53-null PC3 prostate cancer cells following infection with a control virus or adenoviral construct expressing wild-type p53. Over 300 genes that had not been previously recognized as p53 target genes were identified. Of these genes, 224 were upregulated and 111 were downregulated (p<0.05). Functional over-representation analysis identified cell migration as a significantly over-represented biological function of p53. Further analysis identified two genes that are critical for the control of cell migration as potential p53 targets. One, hyaluronan mediated motility receptor (HMMR), has recently been shown to be a p53 target important for regulation of the cell cycle. Here, we show that HMMR is downregulated by p53 in several cell lines, and HMMR's regulation is dependent on the presence of the cdk inhibitor, p21, and histone deactelyase activity. The other gene, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), itself a tumor suppressor, is shown here, for the first time, as a p53 direct target by ChIP analysis. We next determined the effect of p53 activation on cell migration and found that p53 significantly slows the rate of cell migration in Boyden chamber migration assays and digital videomicroscopy wound healing studies. Further, our studies established the specific roles of CEACAM1 and HMMR in cell migration and determine that loss of CEACAM1 and overexpression of HMMR independently contribute to increased cell migration. Taken together, these studies provide a direct mechanistic link between p53 to the regulatory control of specific target genes that mediate cell adhesion and migration. ^