985 resultados para Cell Search
Resumo:
Purpose The detection of circulating tumor cells (CTCs) provides important prognostic information in men with metastatic prostate cancer. We aim to determine the rate of detection of CTCs in patients with high-risk non-metastatic prostate cancer using the CellSearch® method. Method Samples of peripheral blood (7.5 mL) were drawn from 36 men with newly diagnosed high-risk non-metastatic prostate cancer, prior to any initiation of therapy and analyzed for CTCs using the CellSearch® method. Results The median age was 70 years, median PSA was 14.1, and the median Gleason score was 9. The median 5-year risk of progression of disease using a validated nomogram was 39 %. Five out of 36 patients (14 %, 95 % CI 5–30 %) had CTCs detected in their circulation. Four patients had only 1 CTC per 7.5 mL of blood detected. One patient had 3 CTCs per 7.5 mL of blood detected, which included a circulating tumor microemboli. Both on univariate analysis and multivariate analysis, there were no correlations found between CTC positivity and the classic prognostic factors including PSA, Gleason score, T-stage and age. Conclusion This study demonstrates that patients with high-risk, non-metastatic prostate cancer present infrequently with small number of CTCs in peripheral blood. This finding is consistent with the limited literature available in this setting. Other CTC isolation and detection technologies with improved sensitivity and specificity may enable detection of CTCs with mesenchymal phenotypes, although none as yet have been validated for clinical use. Newer assays are emerging for detection of new putative biomarkers for prostate cancer. Correlation of disease control outcomes with CTC detection will be important.
Resumo:
This thesis presents quantitative studies of T cell and dendritic cell (DC) behaviour in mouse lymph nodes (LNs) in the naive state and following immunisation. These processes are of importance and interest in basic immunology, and better understanding could improve both diagnostic capacity and therapeutic manipulations, potentially helping in producing more effective vaccines or developing treatments for autoimmune diseases. The problem is also interesting conceptually as it is relevant to other fields where 3D movement of objects is tracked with a discrete scanning interval. A general immunology introduction is presented in chapter 1. In chapter 2, I apply quantitative methods to multi-photon imaging data to measure how T cells and DCs are spatially arranged in LNs. This has been previously studied to describe differences between the naive and immunised state and as an indicator of the magnitude of the immune response in LNs, but previous analyses have been generally descriptive. The quantitative analysis shows that some of the previous conclusions may have been premature. In chapter 3, I use Bayesian state-space models to test some hypotheses about the mode of T cell search for DCs. A two-state mode of movement where T cells can be classified as either interacting to a DC or freely migrating is supported over a model where T cells would home in on DCs at distance through for example the action of chemokines. In chapter 4, I study whether T cell migration is linked to the geometric structure of the fibroblast reticular network (FRC). I find support for the hypothesis that the movement is constrained to the fibroblast reticular cell (FRC) network over an alternative 'random walk with persistence time' model where cells would move randomly, with a short-term persistence driven by a hypothetical T cell intrinsic 'clock'. I also present unexpected results on the FRC network geometry. Finally, a quantitative method is presented for addressing some measurement biases inherent to multi-photon imaging. In all three chapters, novel findings are made, and the methods developed have the potential for further use to address important problems in the field. In chapter 5, I present a summary and synthesis of results from chapters 3-4 and a more speculative discussion of these results and potential future directions.
Resumo:
Acute kidney injury (AKI) is classically described as a rapid loss of kidney function. AKI affects more than 15% of all hospital admissions and is associated with elevated mortality rates. Although many advances have occurred, intermittent or continuous renal replacement therapies are still considered the best options for reversing mild and severe AKI syndrome. For this reason, it is essential that innovative and effective therapies, without side effects and complications, be developed to treat AKI and the end-stages of renal disease. Mesenchymal stem cell (MSC) based therapies have numerous advantages in helping to repair inflamed and damaged tissues and are being considered as a new alternative for treating kidney injuries. Numerous experimental models have shown that MSCs can act via differentiation-independent mechanisms to help renal recovery. Essentially, MSCs can secrete a pool of cytokines, growth factors and chemokines, express enzymes, interact via cell-to-cell contacts and release bioagents such as microvesicles to orchestrate renal protection. In this review, we propose seven distinct properties of MSCs which explain how renoprotection may be conferred: 1) anti-inflammatory; 2) pro-angiogenic; 3) stimulation of endogenous progenitor cells; 4) anti-apoptotic; 5) anti-fibrotic; 6) anti-oxidant; and 7) promotion of cellular reprogramming. In this context, these mechanisms, either individually or synergically, could induce renal protection and functional recovery. This review summarises the most important effects and benefits associated with MSC-based therapies in experimental renal disease models and attempts to clarify the mechanisms behind the MSC-related renoprotection. MSCs may prove to be an effective, innovative and affordable treatment for moderate and severe AKI. However, more studies need to be performed to provide a more comprehensive global understanding of MSC-related therapies and to ensure their safety for future clinical applications.
Resumo:
Regeneration of osseous defects by tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. The concept of in vitro cultured osteoblasts having an ability to induce new bone formation has been demonstrated in the critical size defects using small animal models. The bone derived cells can be incorporated into bioengineered scaffolds and synthesize bone matrix, which on implantation can induce new bone formation. In search of optimal cell delivery materials, the extracellular matrix as cell carriers for the repair and regeneration of tissues is receiving increased attention. We have investigated extracellular matrix formed by osteoblasts in vitro as a scaffold for osteoblasts transplantation and found a mineralized matrix, formed by human osteoblasts in vitro, can initiate bone formation by activating endogenous mesenchymal cells. To repair the large bone defects, osteogenic or stem cells need to be prefabricated in a large three dimensional scaffold usually made of synthetic biomaterials, which have inadequate interaction with cells and lead to in vivo foreign body reactions. The interstitial extracellular matrix has been applied to modify biomaterials surface and identified vitronectin, which binds the heparin domain and RGD (Arg-Gly-Asp) sequence can modulate cell spreading, migration and matrix formation on biomaterials. We also synthesized a tri-block copolymer, methoxy-terminated poly(ethylene glycol)(MPEG)-polyL-lactide(PLLA)-polylysine(PLL) for human osteoblasts delivery. We identified osteogenic activity can be regulated by the molecular weight and composition of the triblock copolymers. Due to the sequential loss of lineage differentiation potential during the culture of bone marrow stromal cells that hinderers their potential clinical application, we have developed a clonal culture system and established several stem cell clones with fast growing and multi-differentiation properties. Using proteomics and subtractive immunization, several differential proteins have been identified and verified their potential application in stem cell characterization and tissue regeneration
Resumo:
Metastasis, the passage of primary tumour cells throughout the body via the vascular system and their subsequent proliferation into secondary lesions in distant organs, represents a poor prognosis and therefore an understandably feared event for cancer patients. Despite considerable advances in cancer diagnosis and treatment, most deaths are the result of metastases resistant to conventional treatment [1]. Rather than being a random process, metastasis involves a series of organised steps leading to the growth of a secondary tumour. Malignant tumours stimulate the production of new vessels by the host, and this process is a prerequisite for the increase in size of a new tumour [2]. Angiogenesis, not only permits tumour expansion but also allows the entry of tumour cells into the circulation and is probably the most vital event for the metastatic process [3]. Metastasis and angiogenesis [4] have received much attention in recent years. A biological understanding of both phenomena seems to be an urgent priority towards the search for an effective prevention and treatment of tumour progression. Studies in vitro and in vivo have shown that one of the most important barriers to the passage of malignant cells is the basement membrane. The crossing of such barriers is a vital step in the formation of a metastasis [5].
Resumo:
The SOS screen, as originally described by Perkins et al. (1999), was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS+ candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS+ candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS+ candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.
Resumo:
The present invention relates to genetically modified cells that are capable of optimal transgene expression by co-expressing a silencing suppressor whilst at the same time are also capable of silencing a gene, such as a naturally occurring gene of the cell. The present invention also relates to methods of producing the modified cells, as well as relates to processes for obtaining a genetically modified cell with a desired property.
Resumo:
The baculovirus expression system using the Autographa californica nuclear polyhedrosis virus (AcNPV) has been extensively utilized for high-level expression of cloned foreign genes, driven by the strong viral promoters of polyhedrin (polh) and p10 encoding genes. A parallel system using Bombyx mori nuclear polyhedrosis virus (BmNPV) is much less exploited because the choice and variety of BmNPV-based transfer vectors are limited. Using a transient expression assay, we have demonstrated here that the heterologous promoters of the very late genes polh and p10 from AcNPV function as efficiently in BmN cells as the BmNPV promoters. The location of the cloned foreign gene with respect to the promoter sequences was critical for achieving the highest levels of expression, following the order +35 > +1 > -3 > -8 nucleotides (nt) with respect to the polh or p10 start codons. We have successfully generated recombinant BmNPV harboring AcNPV promoters by homeologous recombination between AcNPV-based transfer vectors and BmNPV genomic DNA. Infection of BmN cell lines with recombinant BmNPV showed a temporal expression pattern, reaching very high levels in 60-72 h post infection. The recombinant BmNPV harboring the firefly luciferase-encoding gene under the control of AcNPV polh or p10 promoters, on infection of the silkworm larvae led to the synthesis of large quantities of luciferase. Such larvae emanated significant luminiscence instantaneously on administration of the substrate luciferin resulting in 'glowing silkworms'. The virus-infected larvae continued to glow for several hours and revealed the most abundant distribution of virus in the fat bodies. In larval expression also, the highest levels were achieved when the reporter gene was located at +35 nt of the polh.
Resumo:
Antisera (a/s) raised to individual α- and β-subunits of human chorionic gonadotropin (hCG) have been characterized for specificity using immunoaffinity procedures and used to study the disposition of the two subunits when intact hCG is complexed with luteinizing hormone (LH) receptor of the Leydig cells. Three kinds of experiments were done. (a) The ability of the preformed hormone-antibody (H-Ab) complex to bind to receptor and stimulate a response; (b) the ability of the a/s to dissociate hCG from its complex with the receptor and thereby terminate response; and (c) the ability of the premixed antibody and receptor to compete for binding of labeled hCG. Although the subunit specific a/s used here were equipotent in binding hCG (capacity to bind and Ka being very similar), their behavior once the receptor preparation or Leydig cell is introduced into the system was drastically different. The β-subunit antibody relative to the α-subunit antibody, appeared to be poorly effective in preventing hCG from either binding to the receptor or inhibiting the continuation of response. The results suggest that hCG upon interaction with the receptor loses the determinants specific to the β-region more rapidly compared to those specific to the α-region suggesting thereby that the initial interaction of hCG with the receptor should be occurring through sites in the β-subunit. Although the α-subunit portion of the hCG molecule is available for binding to the antibody for a relatively longer time, the biological response of the cell seems very sensitive to such binding with the antibody as it invariably results in loss of response. In the Leydig cell system, the ability of the a/s to bind hCG that is already complexed to the receptor appears to be dependent upon the time of addition of the antibody to the incubation medium. The antisera were totally ineffective in inhibiting steroidogenic response to hCG if added 60 min after addition of hCG. This would suggest that the hormone-receptor complex once formed perhaps continues to change its orientation with the result that with time relatively less and less of antigenic determinants become available for antibody binding.
Resumo:
The relative induction of FSH and LH receptors in the granulosa cells of immature rat ovary by pregnant mare serum gonadotropin (PMSG) has been studied. A single injection of PMSG (15 IU) brought about a 3- and 12-fold increase in FSH and LH receptor concentration,respectively, in the granulosa cells. Maximal concentration was reached by 72 h but the receptor levels showed a sharp decline during the next 24–48 h. The kinetic properties of the newly formed FSH receptors were indistinguishable from the pre-existing ones. The induced FSH receptors were functional as demonstrated by an increase in the in vitro responsiveness of the cells to exogenous FSH in terms of progesterone production. Treatment of immature rats with cyanoketone, an inhibitor of Δ5,3β-hydroxysteroid dehydrogenase, prior to PMSG injection effectively reduced the PMSG-stimulated increase in the serum estradiol, uterine weight and LH receptors but had no effect on the FSH receptor induction. The ability of PMSG to induce gonadotropin receptors can be arrested at any given time by injecting its antibody, thereby suggesting a continuous need for the hormonal inducer. Estrogen in the absence of the primary inducer was unable to maintain the induced LH and FSH receptor concentration. Inhibition of prostaglandin synthesis using indomethacin also had no effect on either the induction or degradation of gonadotropin receptors. Administration of PMSG antiserum, 48 h after PMSG injection, brought about a rapid decline in the induced receptors over the next 24 h, with a rate constant and \iota 1/2 of 0.078 h−1 and 8.9 h for FSH receptors and 0.086 h−1 and 8.0 h for the LH receptors, respectively.
Resumo:
Measurement of alveolar carbon monoxide (CO) presents a facile technique to estimate the lifespan, L, of red blood cells (RBCs) in vivo. Several recent studies employ this technique and calculate L (in days) using the expression, L = 13.8 (Hb)/P-CO(end), where (Hb) is the concentration (in g/dL) of hemoglobin in blood, and P-CO(end) is the endogenous production of CO (in ppm). Implicit in this calculation is the assumption that the fraction, f, of endogenous CO production due to RBC turnover is a constant equal to 0.7, which yields the expected RBC lifespan, L approximate to 120 days, in normal controls. In anemic patients, however, enhanced RBC turnover may increase f substantially above 0.7. The above expression then overestimates L. Here, we deriv an alternative tive expression, L = 3390[Hb]/322P(CO (end)-110, that accounts explicitly for the dependence of f on the rate of RBC turnover and thereby provides more accurate estimates of L without requiring additional measurements. Using the latter expression, we recalculate L from recent measurements on hepatitis C virus infected patients undergoing treatment with ribavirin. We find that our estimates of L in these patients (39 +/- 13 days) are significantly lower than current estimates (46 +/- 14 days), indicating that ribavirin affects RBC survival more severely than expected from current studies. Our expression for L is simple to employ in a clinical setting and would render the broadly applicable technique of alveolar CO measurement for the estimation of RBC lifespan more accurate.
Resumo:
A quantitative expression has been obtained for the equivalent resistance of an internal short in rechargeable cells under constant voltage charging.
Resumo:
A novel CMOS static RAM cell for ternary logic systems is described. This cell is based on the lambda diode. The operation of the cell has been simulated using the SPICE 2G program. The results of the simulation are given.