998 resultados para Cell Respiration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c exhibits two positively charged sites: site A containing lysine residues with high pK(a) values and site L containing ionizable groups with pK(aobs),values around 7.0. This protein feature implies that cytochrome c can participate in the fusion of mitochondria and have its detachment from the inner membrane regulated by cell acidosis and alkalosis. In this study, We demonstrated that both horse and tuna cytochrome c exhibited two types of binding to inner mitochondrial membranes that contributed to respiration: a high-affinity and low-efficiency pi-I-independent binding (microscopic dissociation constant K(sapp2), similar to 10 nM) and a low-affinity and high-efficiency pH-dependent binding that for horse cytochrome c had a pK(a) of similar to 6.7. For tuna cytochrome c (Lys22 and His33 replaced with Asn and Trp, respectively), the effect of pH on K(sapp1), was less striking than for the horse heme protein, and both tuna and horse cytochrome c had closed K(sapp1) values at pH 7.2 and 6.2, respectively. Recombinant mutated cytochrome c H26N and H33N also restored the respiration of the cytochrome c-depleted mitoplast in a pH-dependent manner. Consistently, the detachment of cytochrome c from nondepleted mitoplasts was favored by alkalinization, suggesting that site Lionization influences the participation of cytochrome c in the respiratory chain and apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both reversible and irreversible inhibition of mitochondrial respiration have been reported following the generation of nitric oxide (NO) by cells. Using J774 cells, we have studied the effect of long-term exposure to NO on different enzymes of the respiratory chain. Our results show that, although NO inhibits complex IV in a way that is always reversible, prolonged exposure to NO results in a gradual and persistent inhibition of complex I that is concomitant with a reduction in the intracellular concentration of reduced glutathione. This inhibition appears to result from S-nitrosylation of critical thiols in the enzyme complex because it can be immediately reversed by exposing the cells to high intensity light or by replenishment of intracellular reduced glutathione. Furthermore, decreasing the concentration of reduced glutathione accelerates the process of persistent inhibition. Our results suggest that, although NO may regulate cell respiration physiologically by its action on complex IV, long-term exposure to NO leads to persistent inhibition of complex I and potentially to cell pathology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Real time monitoring of oxygenation and respiration is on the cutting edge of bioanalysis, including studies of cell metabolism, bioenergetics, mitochondrial function and drug toxicity. This thesis presents the development and evaluation of new luminescent probes and techniques for intracellular O2 sensing and imaging. A new oxygen consumption rate (OCR) platform based on the commercial microfluidic perfusion channel μ-slides compatible with extra- and intracellular O2 sensitive probes, different cell lines and measurement conditions was developed. The design of semi-closed channels allowed cell treatments, multiplexing with other assays and two-fold higher sensitivity to compare with microtiter plate. We compared three common OCR platforms: hermetically sealed quartz cuvettes for absolute OCRs, partially sealed with mineral oil 96-WPs for relative OCRs, and open 96-WPs for local cell oxygenation. Both 96-WP platforms were calibrated against absolute OCR platform with MEF cell line, phosphorescent O2 probe MitoXpress-Intra and time-resolved fluorescence reader. Found correlations allow tracing of cell respiration over time in a high throughput format with the possibility of cell stimulation and of changing measurement conditions. A new multimodal intracellular O2 probe, based on the phosphorescent reporter dye PtTFPP, fluorescent FRET donor and two-photon antennae PFO and cationic nanoparticles RL-100 was described. This probe, called MM2, possesses high brightness, photo- and chemical stability, low toxicity, efficient cell staining and high-resolution intracellular O2 imaging with 2D and 3D cell cultures in intensity, ratiometric and lifetime-based modalities with luminescence readers and FLIM microscopes. Extended range of O2 sensitive probes was designed and studied in order to optimize their spectral characteristics and intracellular targeting, using different NPs materials, delivery vectors, ratiometric pairs and IR dyes. The presented improvements provide useful tool for high sensitive monitoring and imaging of intracellular O2 in different measurement formats with wide range of physiological applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Particular interest has been directed towards the macrophage as a primary antineoplastic cell due to its tumoricidal properties in vitro and the observation that an inverse relationship exists between the number of macrophages infiltrating a tumor and metastatic potential. The mechanism of macrophage-mediated injury of tumor cells remains unknown. Recently, it has been shown that injured tumor cells have defective mitochondrial respiration. Our studies have shown that activated macrophages can release soluble factors which can alter tumor cell respiration.^ The effects of a conditioned supernatant (CS) from cultures of activated macrophages on tumor cell (TC) mitochondrial respiration was studied. CS was obtained by incubation of BCG-elicited, murine peritoneal macrophage with RPMI-1640 supplemented with 10% FCS and 50 ng/ml bacterial endotoxin. This CS was used to treat cultures of EMT-6 TC for 24 hours. Mitochondrial respiration was measured polarigraphically using a Clark-type oxygen electrode. Cell growth rate was assessed by ('3)H-Thymidine incorporation. Exposure of EMT-6 TC to CS resulted in the inhibition of malate and succinate oxidation 76.6% and 72.9%, respectively. While cytochrome oxidase activity was decreased 61.1%. This inhibition was accompanied by a 98.8% inhibition of DNA synthesis (('3)H-Thymidine incorporation). Inhibition was dose-related with a 21.3% inhibition of succinate oxidase from a 0.3 ml dose of CS and a 50% inhibition with 1.0 mls. Chromatography of CS on Sephacryl S-200 resulted in isolation of an 80,000 and a 55,000 dalton component which contained the respiration inhibiting activity (RIF). These factors were distinct from a 120,000 dalton cytolytic factor determined by bioassay on Actinomycin-D treated L929 cells. RIF activity was also distinct from several other cytostatic factors but was itself associated with 2 peaks of cytostatic activity. Characterization of the RIF activity showed that it was destroyed by trypsin and heat (100(DEGREES)C, 5 min). It was stable over a broad range of pH (4-9) and its production was inhibited by cycloheximide. The RIF did not have a direct effect on isolated mitochondria of TC nor did it induce the formation of a stable intracellular toxin for mitochondria.^ In conclusion, activated macrophages synthesize and secrete an 80,000 and a 55,000 dalton protein which inhibits the mitochondrial metabolism of TC. These factors induce a cytostatic but not a cytolytic effect on TC.^ The macrophage plays a role in the control of normal and tumor cell growth and in tissue involution. Inhibition of respiration may be one mechanism used by macrophages to control cell growth.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cell concentration and size distribution of the microalgae Nannochloropsis gaditana were studied over the whole growth process. Various samples were taken during the light and dark periods the algae were exposed to. The distributions obtained exhibited positive skew, and no change in the type of distribution was observed during the growth process. The size distribution shifted to lower diameters in dark periods while in light periods the opposite occurred. The overall trend during the growth process was one where the size distribution shifted to larger cell diameters, with differences between initial and final distributions of individual cycles becoming smaller. A model based on the Logistic model for cell concentration as a function of time in the dark period that also takes into account cell respiration and growth processes during dark and light periods, respectively, was proposed and successfully applied. This model provides a picture that is closer to the real growth and evolution of cultures, and reveals a clear effect of light and dark periods on the different ways in which cell concentration and diameter evolve with time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice-water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 µg C/l/d. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 µg C/l/d. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r**2 = 0.97, P < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SIGNIFICANCE: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year.

RECENT ADVANCES: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell.

CRITICAL ISSUES: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics.

FUTURE DIRECTIONS: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abamectin (ABA), which belongs to the family of avermectins, is used as a parasiticide; however, ABA poisoning can impair liver function. In a previous study using isolated rat liver mitochondria, we observed that ABA inhibited the activity of adenine nucleotide translocator and FoF1-ATPase. The aim of this study was to characterize the mechanism of ABA toxicity in isolated rat hepatocytes and to evaluate whether this effect is dependent on its metabolism. The toxicity of ABA was assessed by monitoring oxygen consumption and mitochondrial membrane potential, intracellular ATP concentration, cell viability, intracellular Ca2+ homeostasis, release of cytochrome c, caspase 3 activity and necrotic cell death. ABA reduces cellular respiration in cells energized with glutamate and malate or succinate. The hepatocytes that were previously incubated with proadifen, a cytochrome P450 inhibitor, are more sensitive to the compound as observed by a rapid decrease in the mitochondrial membrane potential accompanied by reductions in ATP concentration and cell viability and a disruption of intracellular Ca2+ homeostasis followed by necrosis. Our results indicate that ABA biotransformation reduces its toxicity, and its toxic action is related to the inhibition of mitochondrial activity, which leads to decreased synthesis of ATP followed by cell death. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. 1. Some parameters (glycolysis, respiration, levels of glycolytic enzymes) of the lymphoid cells from the Sticker's lymphosarcoma were established in order to better define the biochemical behavior of the venereal tumor of the dog. 2. 2. For comparative purposes lymphocytes from peripheral blood of normal tumor-bearing dogs were also studied. 3. 3. Lactic acid produced by the tumor cells during aerobic glycolysis is liberated in the reaction medium. 4. 4. Oxygen uptake is enhanced in the presence of succinate, but not with pyruvate, α-ketoglutarate, or malate as substrates. 5. 5. Higher levels of some of the enzymes from the glycolytic pathways as well as differences on the physicochemical and kinetic properties of the glycolytic regulatory enzymes are found in Sticker's tumor cells, when compared with the lymphocytes from peripheral blood of normal and tumor-bearing dogs. 6. 6. A fructose-bisphosphate positively modulated pyruvatekinase is found in the tumor cells. © 1987.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions. and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some schools do not have ideal access to laboratory space and supplies. Computer simulations of laboratory activities can be a cost-effective way of presenting experiences to students, but are those simulations as effective at supplementing content concepts? This study compared the use of traditional lab activities illustrating the principles of cell respiration and photosynthesis in an introductory high school biology class with virtual simulations of the same activities. Additionally student results were analyzed to assess if student conceptual understanding was affected by the complexity of the simulation. Although all student groups posted average gain increases between the pre and post-tests coupled with positive effect sizes, students who completed the wet lab version of the activity consistently outperformed the students who completed the virtual simulation of the same activity. There was no significant difference between the use of more or less complex simulations. Students also tended to rate the wet lab experience higher on a motivation and interest inventory.