869 resultados para Cell Morphology Analysis
Resumo:
This work has led to the development of empirical mathematical models to quantitatively predicate the changes of morphology in osteocyte-like cell lines (MLO-Y4) in culture. MLO-Y4 cells were cultured at low density and the changes in morphology recorded over 11 hours. Cell area and three dimensional shape features including aspect ratio, circularity and solidity were then determined using widely accepted image analysis software (ImageJTM). Based on the data obtained from the imaging analysis, mathematical models were developed using the non-linear regression method. The developed mathematical models accurately predict the morphology of MLO-Y4 cells for different culture times and can, therefore, be used as a reference model for analyzing MLO-Y4 cell morphology changes within various biological/mechanical studies, as necessary.
Resumo:
Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.
Resumo:
Human arythrocytes were used as a model system for an investigation of the mechanism of action of the antiproliferative drug Adriamycin. Erythrocytes were induced to undergo a change in morphology by elevation of intracellular calcium. It was revealed that the widely used media employed for the study of morphological change were unsuitable; a new incubation medium was developed so that cells were metabolically replete. In this medium echinocytosis took place both in a calcium concentration- and time-dependent manner. Pretreatment of erythrocytes with Adriamycin (10 M for 10 mins) protected the erythrocytes against calcium-induced echinocytosis at calcium concentrations < 150M. SDS-PAGE analysis of the cytoskeletal proteins prepared from erythrocytes revealed the calcium-induced proteolysis of two main cytoskeletal proteins: band 2:1 and band 4:1. Only the rate of the proteolysis of band 2.1 correlated with the onset of echinocytosis. Adriamycin inhibited the breakdown of band 2.1 even when the cells formed echinocytes; this raises doubts concerning the importance of band 2.1 in the maintenance of discocyte morphology. Adriamycin only marginally inhibited the purified calcium-activated thio protease (calpain). Calcium-loading of human erythrocytes increased the phosphorylation of several major cytoskeletal proteins including pp120, band 3, band 4.1 and band 4.9. The pattern of increase resembled that induced by 12-0-tetradecanoyl-phorbol-13-acetate. Pre-treatment with Adriamycin prior to calcium loading caused a general lowering of basal phosphorylation. Adriamycin had no effect on the activity of the calcium-activated phospholipid-dependent protein kinase (protein kinase C). A hypothesis is put forward that the morphological transition of erythrocytes might be dependent upon the activity of a contractile system.
Resumo:
The cells of multicellular organisms have differentiated to carry out specific functions that are often accompanied by distinct cell morphology. The actin cytoskeleton is one of the key regulators of cell shape subsequently controlling multiple cellular events including cell migration, cell division, endo- and exocytosis. A large set of actin regulating proteins has evolved to achieve and tightly coordinate this wide range of functions. Some actin regulator proteins have so-called house keeping roles and are essential for all eukaryotic cells, but some have evolved to meet the requirements of more specialized cell-types found in higher organisms enabling complex functions of differentiated organs, such as liver, kidney and brain. Often processes mediated by the actin cytoskeleton, like formation of cellular protrusions during cell migration, are intimately linked to plasma membrane remodeling. Thus, a close cooperation between these two cellular compartments is necessary, yet not much is known about the underlying molecular mechanisms. This study focused on a vertebrate-specific protein called missing-in-metastasis (MIM), which was originally characterized as a metastasis suppressor of bladder cancer. We demonstrated that MIM regulates the dynamics of actin cytoskeleton via its WH2 domain, and is expressed in a cell-type specific manner. Interestingly, further examination showed that the IM-domain of MIM displays a novel membrane tubulation activity, which induces formation of filopodia in cells. Following studies demonstrated that this membrane deformation activity is crucial for cell protrusions driven by MIM. In mammals, there are five members of IM-domain protein family. Functions and expression patterns of these family members have remained poorly characterized. To understand the physiological functions of MIM, we generated MIM knockout mice. MIM-deficient mice display no apparent developmental defects, but instead suffer from progressive renal disease and increased susceptibility to tumors. This indicates that MIM plays a role in the maintenance of specific physiological functions associated with distinct cell morphologies. Taken together, these studies implicate MIM both in the regulation of the actin cytoskeleton and the plasma membrane. Our results thus suggest that members of MIM/IRSp53 protein family coordinate the actin cytoskeleton:plasma membrane interface to control cell and tissue morphogenesis in multicellular organisms.
Resumo:
In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio4-(p-tolyl)-1,2 ,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC50 of 3-5 mu M) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G1 phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA
Resumo:
The first chapter of this thesis deals with automating data gathering for single cell microfluidic tests. The programs developed saved significant amounts of time with no loss in accuracy. The technology from this chapter was applied to experiments in both Chapters 4 and 5.
The second chapter describes the use of statistical learning to prognose if an anti-angiogenic drug (Bevacizumab) would successfully treat a glioblastoma multiforme tumor. This was conducted by first measuring protein levels from 92 blood samples using the DNA-encoded antibody library platform. This allowed the measure of 35 different proteins per sample, with comparable sensitivity to ELISA. Two statistical learning models were developed in order to predict whether the treatment would succeed. The first, logistic regression, predicted with 85% accuracy and an AUC of 0.901 using a five protein panel. These five proteins were statistically significant predictors and gave insight into the mechanism behind anti-angiogenic success/failure. The second model, an ensemble model of logistic regression, kNN, and random forest, predicted with a slightly higher accuracy of 87%.
The third chapter details the development of a photocleavable conjugate that multiplexed cell surface detection in microfluidic devices. The method successfully detected streptavidin on coated beads with 92% positive predictive rate. Furthermore, chambers with 0, 1, 2, and 3+ beads were statistically distinguishable. The method was then used to detect CD3 on Jurkat T cells, yielding a positive predictive rate of 49% and false positive rate of 0%.
The fourth chapter talks about the use of measuring T cell polyfunctionality in order to predict whether a patient will succeed an adoptive T cells transfer therapy. In 15 patients, we measured 10 proteins from individual T cells (~300 cells per patient). The polyfunctional strength index was calculated, which was then correlated with the patient's progress free survival (PFS) time. 52 other parameters measured in the single cell test were correlated with the PFS. No statistical correlator has been determined, however, and more data is necessary to reach a conclusion.
Finally, the fifth chapter talks about the interactions between T cells and how that affects their protein secretion. It was observed that T cells in direct contact selectively enhance their protein secretion, in some cases by over 5 fold. This occurred for Granzyme B, Perforin, CCL4, TNFa, and IFNg. IL- 10 was shown to decrease slightly upon contact. This phenomenon held true for T cells from all patients tested (n=8). Using single cell data, the theoretical protein secretion frequency was calculated for two cells and then compared to the observed rate of secretion for both two cells not in contact, and two cells in contact. In over 90% of cases, the theoretical protein secretion rate matched that of two cells not in contact.
Resumo:
Absence of gravity or microgravity influences the cellular functions of bone forming osteoblasts. The underlying mechanism, however, of cellular sensing and responding to the gravity vector is poorly understood. This work quantified the impact of vector-directional gravity on the biological responses of Ros 17/2.8 cells grown on upward-, downward- or edge-on-oriented substrates. Cell morphology and nuclear translocation, cell proliferation and the cell cycle, and cytoskeletal reorganization were found to vary significantly in the three orientations. All of the responses were duration-dependent. These results provide a new insight into understanding how osteoblasts respond to static vector-directional gravity.
The Effect of Material Factors on the Density and Cell Morphology of Chemically Foamed Polypropylene
Resumo:
Bdellovibrio bacteriovorus are small, vibroid, predatory bacteria that grow within the periplasmic space of a host Gram-negative bacterium. The intermediate-filament (IF)-like protein crescentin is a member of a broad class of IF-like, coiled-coil-repeat-proteins (CCRPs), discovered in Caulobacter crescentus, where it contributes to the vibroid cell shape. The B. bacteriovorus genome has a single ccrp gene encoding a protein with an unusually long, stutter-free, coiled-coil prediction; the inactivation of this did not alter the vibriod cell shape, but caused cell deformations, visualized as chiselled insets or dents, near the cell poles and a general 'creased' appearance, under the negative staining preparation used for electron microscopy, but not in unstained, frozen, hydrated cells. Bdellovibrio bacteriovorus expressing 'teal' fluorescent protein (mTFP), as a C-terminal tag on the wild-type Ccrp protein, did not deform under negative staining, suggesting that the function was not impaired. Localization of fluorescent Ccrp-mTFP showed some bias to the cell poles, independent of the cytoskeleton, as demonstrated by the addition of the MreB-specific inhibitor A22. We suggest that the Ccrp protein in B. bacteriovorus contributes as an underlying scaffold, similar to that described for the CCRP protein FilP in Streptomyces coelicolor, preventing cellular indentation, but not contributing to the vibroid shape of the B. bacteriovorus cells.