953 resultados para Cell Cocktail 34-beta-e12 p63
Resumo:
In recent times, PSA screening and a substantial increase in prostate needle biopsies have not only resulted in detection of minute foci of cancer but have also very likely resulted in increased detection of atypical glandular proliferations. Not uncommonly, there are only a limited number of atypical glands in these biopsies, and these require careful evaluation to enable an accurate diagnosis. We describe diagnostic implications, use of immunohistochemistry, and clinical significance of these lesions. Foci of atypical glands, also labeled atypical small acinar proliferation of uncertain significance, have features suspicious for but not diagnostic of cancer. Atypical foci include a broad group of lesions of differing clinical significance. These include benign, small acinar proliferations mimicking prostate cancer and atypical glandular proliferations suspicious for carcinoma. Definite diagnosis requires accurate histopathologic assessment and judicious use of immunohistochemistry. Patients with atypical glands on prostate needle biopsy have a high risk for harboring cancer and therefore have an increased risk for having cancer detected in subsequent biopsies.
Resumo:
T lymphocytes reactive with the product of the Mlsa-allele of the minor lymphocyte stimulating (Mls) locus use a predominant T-cell receptor beta-chain variable gene segment (V beta 6). Such V beta 6-bearing T cells are selectively eliminated in the thymus of Mlsa-bearing mice, consistent with a model in which tolerance to self antigens is achieved by clonal deletion.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
There have been several recent reports of cytokeratin immunoreactivity in glial cells and tumors. We wanted to further test these tissues for cytokeratin immunoreactivity, and to determine whether antibody positivity corresponded to true cytokeratin expression. In the first set of experiments, a series of 10 formalin-fixed, frozen sections of glial tissue were employed; positive immunostaining with a cocktail of monoclonal anti-cytokeratin antibodies was seen only when a pepsin predigestion step was included in the immunostaining procedure. In the second set of experiments, 30 cases of malignant glioma fixed in both methacarn and formalin fixation were employed. Using a panel of three different anti-cytokeratin monoclonal antibodies (35 beta H11, 34 beta E12, CAM5.2), no positive immunostaining was observed in any of the methacarn-fixed tissues; positive immunostaining in the corresponding formalin-fixed tissue was frequently found, but only using the antibodies (35 beta H11, 34 beta E12) requiring enzyme predigestion. In the third set of experiments, immunoblots were performed on cytoskeletal extracts of human gliomas; no bands corresponding to known cytokeratins were observed in any cases. It is concluded that glial tissues and tumors do not, in fact, truly express cytokeratins, despite the fact that it is possible to obtain positive immunostaining of glial tumors and tissues using certain anti-cytokeratin antibodies under certain laboratory conditions.
Resumo:
Human Parvovirus B19 (B19V) is a recognized cause of life-threatening conditions among patients with hemoglobinopathies. This study investigates B19V infection in patients with sickle cell disease and beta-thalassemia using different experimental approaches. A total of 183 individuals (144 with sickle cell disease and 39 with beta-thalassemia major) and 100 healthy blood donors were examined for B19V using anti-B19V IgG enzyme immunoassay, quantitative PCR, DNA sequencing, and phylogenetic analysis. Viremia was documented in 18.6% of patients and 1% of donors, and was generally characterized by low viral load (VL); however, acute infections were also observed. Anti-B19V IgG was detected in 65.9% of patients with sickle cell disease and in 60% of donors, whereas the patients with thalassemia exhibited relatively low seroreactivity. The seroprevalence varied among the different age groups. In patients, it progressively increased with age, whereas in donors it reached a plateau. Based on partial NS1 fragments, all isolates detected were classified as subgenotype 1A with a tendency to elicit genetically complex infections. Interestingly, quasispecies occurred in the plasma of not only patients but also donors with even higher heterogeneity. The partial NS1 sequence examined did not exhibit positive selection. Quantitation of B19V with a conservative probe is a technically and practically useful approach. The extensive spread of B19V subgenotype 1A in patients and donors and its recent introduction into the countryside of the Sao Paulo State, Brazil were demonstrated; however, it is difficult to establish a relationship between viral sequences and the clinical outcomes of the infection. J. Med. Virol. 84:16521665, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The goal of this study was to determine whether beta(1)-adrenergic receptor (AR) and beta(2)-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac beta(2)-AR can activate both G(s) and G(i) proteins, whereas cardiac beta(1)-AR couples only to G(s). To avoid complicated crosstalk between beta-AR subtypes, we expressed beta(1)-AR or beta(2)-AR individually in adult beta(1)/beta(2)-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of beta(1)-AR, but not beta(2)-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, beta(2)-AR (but not beta(1)-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting G(i), G(beta gamma), or phosphoinositide 3 kinase (PI3K) with pertussis toxin, beta ARK-ct (a peptide inhibitor of G(beta gamma)), or LY294002, respectively. This indicates that beta(2)-AR activates Akt via a G(i)-G(beta gamma)-PI3K pathway. More importantly, inhibition of the G(i)-G(beta gamma)-PI3K-Akt pathway converts beta(2)-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, beta(2)-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the G(i)-G(beta gamma)-PI3K-Akt signaling pathway.
Resumo:
Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n = 27) and GBM (n = 28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p < 0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-Fc gamma RIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1 beta (IL1 beta) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1 beta neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1 beta which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma discrimination, identified IL1 beta as a potential candidate for developing targeted therapy. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Drak2 est un membre de la famille des protéines associées à la mort et c’est une sérine/thréonine kinase. Chez les souris mutantes nulles Drak2, les cellules T ne présentent aucune défectuosité apparente en apoptose induite par activation, après stimulation avec anti-CD3 et anti-CD28, mais ont un seuil de stimulation réduit, comparées aux cellules T de type sauvage (TS). Dans notre étude, l’analyse d’hybridation in situ a révélé que l’expression de Drak2 est ubiquiste au stade de la mi-gestation chez les embryons, suivie d’une expression plus focale dans les divers organes pendant la période périnatale et l’âge adulte, notamment dans le thymus, la rate, les ganglions lymphatiques, le cervelet, les noyaux suprachiasmatiques, la glande pituitaire, les lobes olfactifs, la médullaire surrénale, l’estomac, la peau et les testicules. Nous avons créé des souris transgéniques (Tg) Drak2 en utilisant le promoteur humain beta-actine. Ces souris Tg montraient des ratios normaux entre cellules T versus B et entre cellules CD4 versus CD8, mais leur cellularité et leur poids spléniques étaient inférieurs comparé aux souris de type sauvage. Après activation TCR, la réponse proliférative des cellules T Tg Drak2 était normale, même si leur production d’interleukine (IL)-2 et IL-4 mais non d’interféron-r était augmentée. Les cellules T Tg Drak2 activées ont démontré une apoptose significativement accrue en présence d’IL-2 exogène. Au niveau moléculaire, les cellules T Tg Drak2 ont manifesté une augmentation moins élevée des facteurs anti-apoptotiques durant l’activation; un tel changement a probablement rendu les cellules vulnérables aux attaques subséquentes d’IL-2. L’apoptose compromise dans les cellulesT Tg Drak2 a été associée à un nombre réduit de cellules T ayant le phénotype des cellules mémoires (CD62Llo) et avec des réactions secondaires réprimées des cellules T dans l’hypersensibilité de type différé. Ces résultats démontrent que Drak2 s’exprime dans le compartiment des cellules T mais n’est pas spécifique aux cellules T; et aussi qu’il joue des rôles déterminants dans l’apoptose des cellules T et dans le développement des cellules mémoires T. En outre, nous avons recherché le rôle de Drak2 dans la survie des cellules beta et le diabète. L’ARNm et la protéine Drak2 ont été rapidement induits dans les cellules beta de l’îlot après stimulation exogène par les cytokines inflammatoires ou les acides gras libres et qui est présente de façon endogène dans le diabète, qu’il soit de type 1 ou de type 2. La régulation positive de Drak2 a été accompagnée d’une apoptose accrue des cellules beta. L’apoptose des cellules beta provoquée par les stimuli en question a été inhibée par la chute de Drak2 en utilisant petit ARNi. Inversement, la surexpression de Drak2 Tg a mené à l’apoptose aggravée des cellules beta déclenchée par les stimuli. La surexpression de Drak2 dans les îlots a compromis l’augmentation des facteurs anti-apoptotiques, tels que Bcl-2, Bcl-xL et Flip, sur stimulation par la cytokine et les acides gras libres. De plus, les expériences in vivo ont démontré que les souris Tg Drak2 étaient sujettes au diabète de type 1 dans un modèle de diabète provoqué par de petites doses multiples de streptozotocine et qu’elles étaient aussi sujettes au diabète de type 2 dans un modèle d’obésité induite par la diète. Nos données montrent que Drak2 est défavorable à la survie des cellules beta. Nous avons aussi étudié la voie de transmission de Drak2. Nous avons trouvé que Drak2 purifiée pouvait phosphoryler p70S6 kinase dans une analyse kinase in vitro. Lasurexpression de Drak2 dans les cellules NIT-1 a entraîné l’augmentation de la phosphorylasation p70S6 kinase tandis que l’abaissement de Drak2 dans ces cellules a réduit la phosphorylation. Ces recherches mécanistes ont prouvé que p70S6 kinase était véritablement un substrat de Drak2 in vitro et in vivo. Cette étude a découvert les fonctions importantes de Drak2 dans l’homéostasie des cellules T et le diabète. Nous avons prouvé que p70S6 kinase était un substrat de Drak2. Nos résultats ont approfondi nos connaissances de Drak2 à l’intérieur des systèmes immunitaire et endocrinien. Certaines de nos conclusions, comme les rôles de Drak2 dans le développement des cellules mémoires T et la survie des cellules beta pourraient être explorées pour des applications cliniques dans les domaines de la transplantation et du diabète.
Resumo:
We studied the induction of protease activity by the laminin alpha 1-derived peptide AG73 in cells from adenoid cystic carcinoma (CAC2) and myoepithelioma (M1), respectively a malignant and a benign salivary gland tumors. Laminin alpha 1 chain and MMP9 were immunolocalized in adenoid cystic carcinoma and myoepithelioma in vivo and in vitro. Cells grown inside AG73-enriched laminin-111 exhibited large spaces in the extracellular matrix, suggestive of remodeling. The broad spectrum MMP inhibitor GM6001 decreased spaces induced by AG73 in CAC2 and M I cells. This result strongly suggests that AG73-mediated matrix remodeling involves matrix metalloproteinases. CAC2 and M1 cells cultured on AG73 showed a dose-dependent increase of MMP9 secretion, as detected by zymography. Furthermore, siRNA silencing of MMP9 decreased remodeling in 3D cultures. We searched for AG73 receptors regulating MMP9 activity in our cell lines. CAC2 and M1 cells grown on AG73 exhibited colocalization of syndecan-1 and beta 1 integrin. siRNA knockdown of syndecan-1 expression in these cells resulted in decreased adhesion to AG73 and reduced protease and remodeling activity. We investigated syndecan-1 co-receptors in both cell lines. Silencing beta 1 integrin inhibited adhesion to AG73, matrix remodeling and protease activity. Double-knockdown experiments were carried out to further explore syndecan-1 and beta 1 integrin cooperation. CAC2 cells transfected with both syndecan-1 and beta 1 integrin siRNA oligos showed significant decrease in adhesion to AG73. Simultaneous silencing of receptors also induced a decrease in protease activity. Our results suggest that syndecan-1 and beta 1 integrin signaling downstream of AG73 regulate adhesion and MMP production by CAC2 and M1 cells. (c) 2008 Elsevier B.V./International Society of Matrix Biology. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Integrins are major two-way signaling receptors responsible for the attachment of cells to the extracellular matrix and for cell-cell interactions that underlie immune responses, tumor metastasis, and progression of atherosclerosis and thrombosis. We report the structure-function analysis of the cytoplasmic tail of integrin beta 3 (glycoprotein IIla) based on the cellular import of synthetic peptide analogs of this region. Among the four overlapping cell-permeable peptides, only the peptide carrying residues 747-762 of the carboxyl-terminal segment of integrin beta 3 inhibited adhesion of human erythroleukemia (HEL) cells and of human endothelial cells (ECV) 304 to immobilized fibrinogen mediated by integrin beta 3 heterodimers, alpha IIb beta 3, and alpha v beta 3, respectively. Inhibition of adhesion was integrin-specific because the cell-permeable beta 3 peptide (residues 747-762) did not inhibit adhesion of human fibroblasts mediated by integrin beta 1 heterodimers. Conversely, a cell-permeable peptide representing homologous portion of the integrin beta 1 cytoplasmic tail (residues 788-803) inhibited adhesion of human fibroblasts, whereas it was without effect on adhesion of HEL or ECV 304 cells. The cell-permeable integrin beta 3 peptide (residues 747-762) carrying a known loss-of-function mutation (Ser752Pro) responsible for the genetic disorder Glanzmann thrombasthenia Paris I did not inhibit cell adhesion of HEL or ECV 304 cells, whereas the beta 3 peptide carrying a Ser752Ala mutation was inhibitory. Although Ser752 is not essential, Tyr747 and Tyr759 form a functionally active tandem because conservative mutations Tyr747Phe or Tyr759Phe resulted in a nonfunctional cell permeable integrin beta 3 peptide. We propose that the carboxyl-terminal segment of the integrin beta 3 cytoplasmic tail spanning residues 747-762 constitutes a major intracellular cell adhesion regulatory domain (CARD) that modulates the interaction of integrin beta 3-expressing cells with immobilized fibrinogen. Import of cell-permeable peptides carrying this domain results in inhibition "from within" of the adhesive function of these integrins.
Resumo:
The pre-T-cell receptor, composed of the T-cell receptor (TCR) beta chain (TCRbeta), pre-Talpha (pTalpha) chain, and CD3 molecules, has been postulated to be a transducer of signals during the early stages of T-cell development. To examine the function of the transmembrane pTalpha chain during tbymocyte development, we generated pTalpha-/- embryonic stem cells and assayed their ability to differentiate into lymphoid cells in vivo after injection into recombination-activating gene (RAG)-2-deficient blastocysts. Thymocytes representing all stages of T-cell differentiation were detected in the thymus of pTalpha-/- chimeric mice, indicating that thymocyte development can occur without pTalpha. However, greatly reduced thymocyte numbers and substantially increased percentages of both CD4-CD8- thymocytes and TCRgammadelta+ thymocytes suggest that pTalpha plays a critical role in thymocyte expansion. To investigate the role of the pTalpha chain in allelic exclusion at the TCRbeta locus, a functionally rearranged TCRbeta minigene was introduced into pTalpha-/- and pTalpha+/- embryonic stem cells, which were subsequently assayed by RAG-2-deficient blastocyst complementation. In the absence of pTalpha, expression of the transgenic TCRbeta inhibited rearrangement of the endogenous TCRbeta locus to an extent similar to that seen in normal TCRbeta transgenic mice, suggesting that pTalpha may not be required for signaling allelic exclusion at the TCRbeta locus.
Resumo:
Predominant usage of V beta 8.2 gene segments, encoding a T-cell receptor (TCR) beta chain variable region, has been reported for pathogenic Lewis rat T cells reactive to myelin basic protein (MBP). However, up to 75% of the alpha/beta T cells in a panel of MBP-specific T-cell lines did not display TCR V beta 8.2, V beta 8.5, V beta 10, or V beta 16 elements. To further investigate TCR usage, we sorted the T-cell lines for V beta 8.2- and V beta 10-positive T cells or depleted the lines of cells with these TCRs. V beta 8.2-positive T cells and one of the depleted T-cell lines strongly reacted against the MBP peptide MBP-(68-88). The depleted T-cell line caused marked experimental autoimmune encephalomyelitis (EAE) even in Lewis rats in which endogenous V beta 8.2-positive T cells had been eliminated by neonatal treatment with anti-V beta 8.2 monoclonal antibodies. T-cell hybridomas generated from this line predominantly used V beta 3 TCR genes coexpressed with TCR V alpha 2 transcripts, which were also used by V beta 8.2-positive T cells. Furthermore, V beta 10-positive T cells reactive to MBP-(44-67) were encephalitogenic when injected immediately after positive selection. After induction of EAE by sorted V beta 8.2- or V beta 10-positive T-cell lines, immunocytochemical analysis of the spinal cord tissue showed a predominance of the injected TCR or of nontypable alpha/beta T cells after injection of the depleted line. Our results demonstrate heterogeneity of TCR beta-chain usage even for a single autoantigen in an inbred strain. Moreover, V beta 8.2-positive T cells are not essential for the induction and progression of adoptive-transfer EAE.