980 resultados para Ce-anomaly


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The distribution of trivalent and tetravalent cerium, Ce(III) and Ce(IV) respectively, in a lateritic profile from Madagascar, has been characterized by X-ray-absorption near-edge structure (XANES) spectroscopy at the Ce LIII-edge on the LUCIA beamline (SOLEIL synchrotron, France). XANES spectra were acquired on bulk-rock samples as well as on specific lateritic minerals or polymineral zones (in-situ measurements) of the tonalite bedrock and the three overlying weathered horizons (C-, B- and A-horizons). Geochemically, the bedrock, and the A- and C-horizons show similar rare earth element content (REE = 363–405 mg/kg). They also display the same positive Ce-anomaly (CeCN/Ce∗ = 1.12–1.45), which is therefore likely to be inherited from the bedrock. In the B-horizon, the higher REE content (REE = 2194 mg/kg) and the larger Ce-anomaly (CeCN/Ce∗ = 4.26) are consistent with an accumulation zone caused by the evaporation of groundwater during the dry season. There is a good agreement between the Ce(III)/Cetotal ratio (XCe(III)) deduced from the positive Ce-anomaly (bulk-rock geochemical data) and that derived from XANES spectroscopy on the same bulk-rock samples (BR-XCe(III)-XANES) in the bedrock, and the C- and B-horizons. In the A-horizon, XANES measurements on bulk rock and minerals revealed a higher BR-XCe(III)-XANES (up to 100%) compared to the XCe(III) deduced from geochemical data (XCe(III) = 79%). The preservation of a positive Ce-anomaly in the A-horizon suggests that the Ce mobilization and redistribution during weathering occurred with no significant Ce fractionation from other trivalent REE. Remarkably, the only investigated sample where cerianite is observed belongs to the B-horizon. Within this horizon, Ce oxidation state varies depending on the microstructural position (porosity, cracks, clay-rich groundmass). The highest Ce(IV) concentrations are measured in cerianite (and aluminophosphates) localized in pores at the vicinity of Mn-rich domains (XCe(III)-XANES = 30–51%). Therefore, Ce fractionation from other REE is attributed to a Ce oxidation and precipitation potentially assisted by oxyhydroxide scavenging. In the C-horizon, Ce(III) and Ce(IV) are mainly distributed in REE-minerals of the rhabdophane group found in pores and cracks. The similarity between the Ce(III) proportion of rhabdophane grains (XCe(III)-XANES = 74–89%) with that of the bedrock (BR-XCe(III)-XANES = 79%) suggests no significant fractionation of Ce(III) and Ce(IV) between solution and mineral during the successive stages of primary REE-mineral alteration, transport in solution and secondary precipitation in the incipient stages of weathering. Overall, our novel spectroscopic approach shows that Ce is not necessarily oxidized nor fractionated from other REE during weathering in lateritic conditions. This implies that like Ce(III), Ce(IV) can be mobilized in aqueous fluids during weathering, possibly thanks to complexation with organic molecules, and can precipitate together with Ce(III) in secondary REE-bearing minerals. The corollary is that (paleo)redox reconstructions in soils and/or sediments based on Ce-anomaly in weathered rocks or minerals must be interpreted with caution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peridotites from the southern Mariana forearc were sampled on the landward trench slope of the Izu-Bonin-Mariana (IBM) subduction zone by dredging. These mantle wedge peridotites underwent hydration by fluid derived from a dehydrated descending slab, and later interacted with seawater after emplacement at or near the seafloor. This study investigates how these two different rock-fluid interaction processes influenced trace element distribution in the southern Mariana forearc peridotites. We measured trace element concentrations of peridotites from the southern Mariana forearc. The southern Mariana forearc peridotites are characterized by a distinct seawater-like REE pattern with an obvious negative Ce anomaly, and La shows good correlation with other REEs (except Ce). In addition, there is a great enrichment of U, Pb, Sr and Li elements, which show a distinct positive anomaly relative to adjacent elements in the multi-element diagram. For the seawater-like REE pattern, we infer that REEs are mainly influenced by seawater during peridotite-seawater interactions after their emplacement at or near the seafloor, by serpentinization or by marine weathering. Furthermore, the anomalous behavior of Ce, compared with other rare earth elements in these samples, may indicate that they have undergone reactions involving Ce (IV) when the peridotites interacted with seawater. Positive U, Pb, Sr and Li anomalies are inferred to be related to seawater and/or fluids released during dehydration of the subducting slab.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From systemic research of microstructure, geochemistry, uranium-series and Be-10 isotope dating on a new-type deepwater ferromanganese crust from the East Philippine Sea, the paleoenvironment evolution of the target area since the terminal Late Miocene was recovered. The vertical section changes of microstructure and chemical composition are consistent in the studied crust, which indicate three major accretion periods and corresponding paleoenvironment evolution of the crust. The bottom crust zone was formed in the terminal Late Miocene (5.6 Ma) with loose microstructure, high detritus content and high growth rate. Reductions of mineral element content, accretion rate and positive Ce-anomaly degree at 4.6 Ma indicate temporal warming, which went against the crust accretion and finally formed an accretion gap in the terminal Middle Pliocene (2.8-2.7 Ma). The more active Antarctic bottom seawaters in the Late Pliocene (2.7 Ma) facilitated the fast transfer to the top pure crust zone. Hereafter, with the further apart of volcanic source and the keeping increase of eolian material (1.0 Ma), although surrounding conditions were still favorable, mineral element content still shows an obvious reducing trend. It thereby offers new carrier and data for the unclear paleoceanographic research of the target area since the terminal Late Miocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineralogical and geochemical characteristics of Fe-oxyhydroxide samples from one dredge station (long. 103 degrees 54.48'W, lat. 12 degrees 42.30'N, water depth 2655 m) on the East Pacific Rise near lat 13 degrees N were analyzed by XRD, ICP-AES, and ICP-MS. Most Fe-oxyhydroxides are amorphous, with a few sphalerite microlites. In comparison with Fe-oxyhydroxides from other fields, the variable ranges in the chemical composition of Fe-oxyhydroxide samples are very narrow; their Fe, Si, and Mn contents were 39.90%, 8.92%, and 1.59%, respectively; they have high Cu (0.88%-1.85%) and Co (65x10(-6)-704x10(-6)) contents, and contain Co+Cu+Zn+Ni > 1.01%. The trace-element (As, Co, Ni, Cu, Zn, Ba, Sr) and major-element (Fe, Ca, Al, Mg) contents of these samples are in the range of hydrothermal sulfide from the East Pacific Rise near 13 degrees N, reflecting that this type of Fe-oxyhydroxide constitutes a secondary oxidation product of hydrothermal sulfide. The Fe-oxyhydroxide samples from one dredge station on the East Pacific Rise near 13 degrees N are lower in Sigma REE (5.44x10(-6)-17.01x10(-6)), with a distinct negative Ce anomaly (0.12-0.28). The Fe-oxyhydroxide samples have similar chondrite-normalized rare-earth-element (REE) patterns to that of seawater, and they are very different from the REE composition characteristics of hydrothermal plume particles and hydrothermal fluids, showing that the REEs of Fe-oxyhydroxide are a major constituent of seawater and that the Fe-oxyhydroxides can become a sink of REE from seawater. The quick settling of hydrothermal plume particles resulted in the lower REE content and higher Mn content of these Fe-oxyhydroxides, which are captured in part of the V and P from seawater by adsorption. The Fe-oxyhydroxides from one dredge station on the East Pacific Rise near 13 degrees N were formed by secondary oxidation in a low temperature, oxygenated environment. In comparison with the elemental (Zn, Cd, Pb, Fe, Co, Cu) average content of hydrothermal sulfide samples from the East Pacific Rise near 13 degrees N, the Zn, Cd, and Pb contents of the Fe-oxyhydroxides are lower, and their Fe, Co, and Cu contents are higher.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution and accumulation of the rare earth elements (REE) in the sediments of the Cochin Estuary and adjacent continental shelf were investigated. The rare earth elements like La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the heavy metals like Mg, V, Cr, Mn, Fe, Cu, Zn, U, Th were analysed by using standard analytical methods. The Post-Archean Australian Shale composition was used to normalise the rare earth elements. It was found that the sediments were more enriched with the lighter rare earth elements than the heavier ones. The positive correlation between the concentrations of REE, Fe and Mn could explain the precipitation of oxyhydroxides in the study area. The factor analysis and correlation analysis suggest common sources of origin for the REEs. From the Ce-anomalies calculated, it was found that an oxic environment predominates in all stations except the station No. 2. The Eu-anomaly gave an idea that the origin of REEs may be from the feldspar. The parameters like total organic carbon, U/Th ratio, authigenic U, Cu/Zn, V/Cr ratios revealed the oxic environment and thus the depositional behaviour of REEs in the region

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Turkestanite, a rare Th- and REE-bearing cyclosilicate in the ekanite-steacyite group was found in evolved peralkaline granites from the Morro Redondo Complex, south Brazil. It occurs with quartz, alkali feldspar and an unnamed Y-bearing silicate. Electron microprobe analysis indicates relatively homogeneous compositions with maximum ThO(2), Na(2)O and K(2)O contents of 22.4%, 2.93% and 3.15 wt.%, respectively, and significant REE(2)O(3) abundances (5.21 to 11.04 wt.%). The REE patterns show enrichment of LREE over HREE, a strong negative Eu anomaly and positive Ce anomaly, the latter in the most transformed crystals. Laser ablation inductively coupled plasma mass spectrometry trace element patterns display considerable depletions in Nb, Zr, Hf, Ti and Li relative to whole-rock sample compositions. Observed compositional variations suggest the influence of coupled substitution mechanisms involving steacyite, a Na-dominant analogue of turkestanite, iraqite, a REE-bearing end-member in the ekanite-steacyite group, ekanite and some theoretical end-members. Turkestanite crystals were interpreted as having precipitated during post-magmatic stages in the presence of residual HFSE-rich fluids carrying Ca, the circulation of which was enhanced by deformational events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distribution, size, mineral, and chemical compositions of ferromanganese micronodules (FMMNs) and chemical composition of host sediments were examined in a series of red clay samples with ages from Eocene to the present at Ocean Drilling Program Leg 199, Site 1216, south of the Molokai Fracture Zone in the Central Pacific Basin. The number of FMMNs changed drastically throughout the 40-m-long red clay intervals. FMMNs are abundant in the upper 9 m of core, decrease between 9 and 25 meters below seafloor (mbsf) with depth, and are very rare from 30 to 40 mbsf. Chemical composition of FMMNs showed high Mn/Fe ratios and Ni and Cu contents and a distinct positive Ce anomaly because of the existence of buserite. This suggests that FMMNs in the red clay from 25 mbsf to the top of the cored interval were deposited continuously in an oxic diagenetic bottom environment. The red clay below 30 mbsf with higher Mn contents contains few FMMNs but abundant tiny Mn particles within brown silicates coated by Fe (oxy-hydro)oxides. This indicates that the mode of manganese deposition changed between 25 and 30 mbsf.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Processes governing the formation of rare earth element (REE) composition are under consideration for ferromanganese deposits (nodules, separate parts of nodules, and micronodules of different size fractions) within the Clarion-Clipperton ore province in the Pacific Ocean. It is shown that ferromanganese oxyhydroxide deposits with different chemical compositions can be produced in sediments under similar sedimentation conditions. In areas with high bioproductivity size of micronodules has positive correlation with Mn content and Mn/Fe and P/Fe ratios and negative correlation with Fe, P, REE, and Ce anomaly. Behavior of REE in micronodules from sediments within bioproductive zones is related to increase of influence of diagenetic processes in sediments as a response to the growth of size of micronodules. Distinctions in chemical composition of micronodules and nodules are related to their interaction with associated sediments. Micronodules grow in sediments using hydrogenous ferromanganese oxyhydroxides. As they grow, micronodules are enriched in labile fraction of sediments reworked during diagenesis. Sources of material of ferromanganese nodules are governed by their formation at the water bottom interface. Their upper part is formed by direct settling of iron oxyhydroxides from bottom water, whereas the lower part is accumulated due to diagenetic processes in sediments. Differences of REE compositions in ferromanganese deposits are caused by the reduction of manganese during diagenesis and its separation from iron. Iron oxyhydroxides form a sorption complex due to sorption of phosphate-ion from bottom and pore waters. Sorption of phosphate-ion results in additional sorption of REE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Behavior of rare earth elements (REE) was examined in oceanic phillipsites collected from four horizons of eupelagic clay in the Southwest Basin of the Pacific Ocean. REE concentrations were determined in >50 ?m size fraction phillipsite samples by the ICP-MS method. Composition of separate phillipsite aggregates was studied by electron microprobe and secondary ion mass-spectrometry. Rare earth elements in phillipsite samples are related to admixture of ferrocalcium hydroxophosphates. Analysis of separate phillipsite aggregates reveals low (<0.1-18.1 ppm) REE(III) concentrations. Ce concentration varies between 2.7 and 140 ppm. The correlation analysis shows that REE(III) present in admixture of iron oxyhydroxides in separate phillipsite aggregates. Based on the REE(III) concentration in iron oxyhydroxides we can identify two generations of phillipsite aggregates. Massive rounded aggregates (phillipsite I) are depleted in REE, while pseudorhombic (phillipsite II) aggregates are enriched in REE and marked by a positive Ce anomaly. Oceanic phillipsites do not accumulate REE or inherit the REE signature of volcaniclastic material and oceanic deep water. Hence, REE distribution in phillipsites does not depend on sedimentation rate and composition of host sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A record of inorganic geochemical variability was produced from a contiguous sequence of 35 samples, with 1 cm spacing, recovered from Hole 1221C. This record covers from 153.91 to 154.27 meters below seafloor and spans the Carbon Isotope Excursion (CIE) associated with the Paleocene/Eocene boundary interval. Elemental concentrations were determined for Al, As, Ba, Ca, Fe, K, Mg, Mn, P, Si, Sr, Ti, Cd, Co, Cr, Cu, Hf, Mo, Nb, Ni, Pb, Pt, Re, Sc, V, Y, Zn, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Most concentration profiles exhibit a marked peak coincident with or just prior to the CIE. In addition, the rare earth element pattern exhibits a significant flattening of the typical, prominent negative Ce anomaly across the same interval.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sediments recovered during DSDP Leg 92 (Site 598) include a complete 16 m.y. record of hydrothermal sedimentation along the western flank of the East Pacific Rise at 19°S. Fifty samples from this sediment column were analyzed to test the hypothesis that the REE composition of the hydrothermal component is primarily acquired via scavenging from seawater. Site 598 provides an ideal sample suite for this purpose: the sediments are lithologically "simple," primarily consisting of a mixture of hydrothermal materials and biogenous carbonates; the composition of the hydrothermal component is essentially constant through space and time; and the sediments have undergone minimal diagenetic alteration. The following observations suggest the above-stated hypothesis is true. The Ce anomaly as well as key indices of light and heavy REE behavior all show that the REE pattern of hydrothermal sediments approaches that of seawater with increasing paleodistance from the rise crest. Moreover, shale-normalized REE patterns are similar to that of seawater, varying only in absolute REE content: the REE content increases with distance from the paleo-rise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Based on significant correlative relationships between paleodistance from the rise crest and both the concentration and mass accumulation rates (MARs) of REEs and Fe, we conclude the REEs in the hydrothermal component are derived from the interaction of seawater and Fe in the hydrothermal plume.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sedimentation and ore formation were studied in sediments from nine stations located along the 24°W profile in the Brazil Basin of the Atlantic Ocean. Bottom sediments are represented by mio- and hemipelagic muds, which are variably enriched in hydrothermal iron and manganese oxyhydroxides. As compared to bottom sediments from other basins of the Atlantic Ocean, the sediments in study are marked by extremely high manganese contents (up to 1.33%) and maximal enrichment in Ce. It was shown that the positive Ce anomaly is related to REE accumulation on iron oxyhydroxides. Influence of hydrothermal source leads to decrease of Ce anomaly and LREE/HREE ratio. In reduced sediments preservation of positive Ce anomaly and/or its disappearance was observed after iron and manganese reduction. REE contents were determined for the first time in the Ethmodiscus oozes of the Brazil Basin. Ore deposits of the Brazil Basin are represented by ferromanganese crusts and ferromanganese nodules. Judging from contents of iron, manganese, REE, and other trace elements, these formations are ascribed to sedimentation (hydrogenic) deposits. They are characterized by a notable positive Ce anomaly in the REE pattern. Extremely high Ce content (up to 96% of total REE) was discovered for the first time in the buried nodules (Mn/Fe = 0.88).