913 resultados para Cd8-t-cell Memory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4+ T cell help during the priming of CD8+ T lymphocytes imprints the capacity for optimal secondary expansion upon re-encounter with antigen. Helped memory CD8+ T cells rapidly expand in response to a secondary antigen exposure, even in the absence of T cell help and, are most efficient in protection against a re-infection. In contrast, helpless memory CTL can mediate effector function, but secondary expansion is reduced. How CD4+ T cells instruct CD8+ memory T cells during priming to undergo efficient secondary expansion has not been resolved in detail. Here, we show that memory CTL after infection with lymphocytic choriomeningitis virus are CD27(high) whereas memory CTL primed in the absence of CD4+ T cell have a reduced expression of CD27. Helpless memory CTL produced low amounts of IL-2 and did not efficiently expand after restimulation with peptide in vitro. Blocking experiments with monoclonal antibodies and the use of CD27(-/-) memory CTL revealed that CD27 ligation during restimulation increased autocrine IL-2 production and secondary expansion. Therefore, regulating CD27 expression on memory CTL is a novel mechanism how CD4+ T cells control CTL memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influenza virus-specific CD8+ T cells generally recognize peptides derived from conserved, internal proteins that are not subject to antibody-mediated selection pressure. Prior exposure to any one influenza A virus (H1N1) can prime for a secondary CD8+ T cell response to a serologically different influenza A virus (H3N2). The protection afforded by this recall of established CD8+ T cell memory, although limited, is not negligible. Key characteristics of primary and secondary influenza-specific host responses are probed here with recombinant viruses expressing modified nucleoprotein (NP) and acid polymerase (PA) genes. Point mutations were introduced into the epitopes derived from the NP and PA such that they no longer bound the presenting H2Db MHC class I glycoprotein, and reassortant H1N1 and H3N2 viruses were made by reverse genetics. Conventional (C57BL/6J, H2b, and Ig+/+) and Ig-/- (muMT) mice were more susceptible to challenge with the single NP [HKx31 influenza A virus (HK)-NP] and PA (HK-PA) mutants, but unlike the Ig-/- mice, Ig+/+ mice were surprisingly resistant to the HK-NP/-PA double mutant. This virus was found to promote an enhanced IgG response resulting, perhaps, from the delayed elimination of antigen-presenting cells. Antigen persistence also could explain the increase in size of the minor KbPB1703 CD8+ T cell population in mice infected with the mutant viruses. The extent of such compensation was always partial, giving the impression that any virus-specific CD8+ T cell response operates within constrained limits. It seems that the relationship between protective humoral and cellular immunity is neither simple nor readily predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated whether T-cell memory reflects increased precursor frequencies of specific long-lived T cells and/or a low-level immune response against some form of persistent antigen. Antivirally protective CD8+ T-cell memory was analyzed mostly in the original vaccinated host to assess the role of antigen in its maintenance. T-cell mediated resistance against reinfection was measured in the spleen and in peripheral solid organs with protocols that excluded protection by antibodies. In vivo protection was compared with detectable cytotoxic T-lymphocyte precursor frequencies determined in vitro. In the spleen, in vitro detectable cytotoxic T-lymphocyte precursor frequencies remained stable independently of antigen, conferring resistance against viral replication in the spleen during reinfection. In contrast, T-cell mediated resistance against reinfection of peripheral solid organs faded away in an antigen-dependent fashion within a few days or weeks. We show that only memory T cells persistently or freshly activated with antigen efficiently extravasate into peripheral organs, where cytotoxic T lymphocytes must be able to exert effector function immediately; both the capacity to extravasate and to rapidly exert effector function critically depend on restimulation by antigen. Our experiments document that the duration of T-cell memory protective against peripheral reinfection depended on the antigen dose used for immunization, was prolonged when additional antigen was provided, and was abrogated after removal of antigen. We conclude that T-cell mediated protective immunity against the usual peripheral routes of reinfection is antigen-dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen stimulation of naive T cells in conjunction with strong costimulatory signals elicits the generation of effector and memory populations. Such terminal differentiation transforms naive T cells capable of differentiating along several terminal pathways in response to pertinent environmental cues into cells that have lost developmental plasticity and exhibit heightened responsiveness. Because these cells exhibit little or no need for the strong costimulatory signals required for full activation of naive T cells, it is generally considered memory and effector T cells are released from the capacity to be inactivated. Here, we show that steadystate dendritic cells constitutively presenting an endogenously expressed antigen inactivate fully differentiated memory and effector CD8+ T cells in vivo through deletion and inactivation. These findings indicate that fully differentiated effector and memory T cells exhibit a previously unappreciated level of plasticity and provide insight into how memory and effector T-cell populations may be regulated. © 2008 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relay hypothesis [R. Nayak, S. Mitra-Kaushik, M.S. Shaila, Perpetuation of immunological memory: a relay hypothesis, Immunology 102 (2001) 387-395] was earlier proposed to explain perpetuation of immunological memory without requiring long lived memory cells or persisting antigen. This hypothesis envisaged cycles of interaction and proliferation of complementary idiotypic B cells (Burnet cells) and anti-idiotypic B cells (Jerne cells) as the primary reason for perpetuation of immunological memory. The presence of pepti-domimics of antigen in anti-idiotypic antibody and their presentation to antigen specific T cells was postulated to be primary reason for perpetuation of T cell memory. Using a viral hemagglutinin as a model, in this work, we demonstrate the presence of peptidomimics in the variable region of ail anti-idiotypic antibody capable of functionally mimicking the antigen derived peptides. A CD8(+) CTL clone was generated against the hemagglutinin protein which specifically responds to either peptidomimic synthesizing cells or peptidomimic pulsed antigen presenting cells. Thus, it appears reasonable that a population of activated antigen specific T cells is maintained in the body by presentation of peptidomimic through Jerne cells and other antigen presenting cells long after immunization. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B and T lymphocyte attenuator (BTLA) is a negative regulator of T cell activation, but its function in vivo is not well characterized. Here we show that mice deficient in full-length BTLA or its ligand, herpesvirus entry mediator, had increased number of memory CD8(+) T cells. The memory CD8(+) T cell phenotype resulted from a T cell-intrinsic perturbation of the CD8(+) T cell pool. Naive BTLA-deficient CD8(+) T cells were more efficient than wild-type cells at generating memory in a competitive antigen-specific system. This effect was independent of the initial expansion of the responding antigen-specific T cell population. In addition, BTLA negatively regulated antigen-independent homeostatic expansion of CD4(+) and CD8(+) T cells. These results emphasize two central functions of BTLA in limiting T cell activity in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD8+ T cells are associated with long term control of virus replication to low or undetectable levels in a population of HIV+ therapy-naïve individuals known as virus controllers (VCs; <5000 RNA copies/ml and CD4+ lymphocyte counts >400 cells/µl). These subjects' ability to control viremia in the absence of therapy makes them the gold standard for the type of CD8+ T-cell response that should be induced with a vaccine. Studying the regulation of CD8+ T cells responses in these VCs provides the opportunity to discover mechanisms of durable control of HIV-1. Previous research has shown that the CD8+ T cell population in VCs is heterogeneous in its ability to inhibit virus replication and distinct T cells are responsible for virus inhibition. Further defining both the functional properties and regulation of the specific features of the select CD8+ T cells responsible for potent control of viremia the in VCs would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies.

Here we discuss the progress made in elucidating the features and regulation of CD8+ T cell response in virus controllers. We first detail the development of assays to quantify CD8+ T cells' ability to inhibit virus replication. This includes the use of a multi-clade HIV-1 panel which can subsequently be used as a tool for evaluation of T cell directed vaccines. We used these assays to evaluate the CD8+ response among cohorts of HIV-1 seronegative, HIV-1 acutely infected, and HIV-1 chronically infected (both VC and chronic viremic) patients. Contact and soluble CD8+ T cell virus inhibition assays (VIAs) are able to distinguish these patient groups based on the presence and magnitude of the responses. When employed in conjunction with peptide stimulation, the soluble assay reveals peptide stimulation induces CD8+ T cell responses with a prevalence of Gag p24 and Nef specificity among the virus controllers tested. Given this prevalence, we aimed to determine the gene expression profile of Gag p24-, Nef-, and unstimulated CD8+ T cells. RNA was isolated from CD8+ T-cells from two virus controllers with strong virus inhibition and one seronegative donor after a 5.5 hour stimulation period then analyzed using the Illumina Human BeadChip platform (Duke Center for Human Genome Variation). Analysis revealed that 565 (242 Nef and 323 Gag) genes were differentially expressed in CD8+ T-cells that were able to inhibit virus replication compared to those that could not. We compared the differentially expressed genes to published data sets from other CD8+ T-cell effector function experiments focusing our analysis on the most recurring genes with immunological, gene regulatory, apoptotic or unknown functions. The most commonly identified gene in these studies was TNFRSF9. Using PCR in a larger cohort of virus controllers we confirmed the up-regulation of TNFRSF9 in Gag p24 and Nef-specific CD8+ T cell mediated virus inhibition. We also observed increase in the mRNA encoding antiviral cytokines macrophage inflammatory proteins (MIP-1α, MIP-1αP, MIP-1β), interferon gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), and recently identified lymphotactin (XCL1).

Our previous work suggests the CD8+ T-cell response to HIV-1 can be regulated at the level of gene regulation. Because RNA abundance is modulated by transcription of new mRNAs and decay of new and existing RNA we aimed to evaluate the net rate of transcription and mRNA decay for the cytokines we identified as differentially regulated. To estimate rate of mRNA synthesis and decay, we stimulated isolated CD8+ T-cells with Gag p24 and Nef peptides adding 4-thiouridine (4SU) during the final hour of stimulation, allowing for separation of RNA made during the final hour of stimulation. Subsequent PCR of RNA isolated from these cells, allowed us to determine how much mRNA was made for our genes of interest during the final hour which we used to calculate rate of transcription. To assess if stimulation caused a change in RNA stability, we calculated the decay rates of these mRNA over time. In Gag p24 and Nef stimulated T cells , the abundance of the mRNA of many of the cytokines examined was dependent on changes in both transcription and mRNA decay with evidence for potential differences in the regulation of mRNA between Nef and Gag specific CD8+ T cells. The results were highly reproducible in that in one subject that was measured in three independent experiments the results were concordant.

This data suggests that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-specific memory CD8+ T cells by enabling rapid recall of anti-HIV-1 effector functions, namely the production and increased stability of antiviral cytokines. We have started to uncover the mechanisms employed by CD8+ T cell subsets with antigen-specific anti-HIV-1 activity, in turn, enhancing our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Ciências Biopatológicas), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les cellules T CD8+ jouent un rôle primordial dans le contrôle des infections virales en limitant la dissémination des cellules infectées. Lors de l’infection chronique par le virus HIV, les cellules T CD8+ HIV-spécifiques ne se différencient pas en cellules effectrices fonctionnelles capables de tuer les cellules infectées par le virus ; ces cellules ne sont plus capables de proliférer ou de produire l’ IL-2. Ces cellules expriment PD-1 et l’engagement de PD-1, par son ligand, aboutit a plusieurs de ces déficits fonctionnels des cellules T . Le rôle de PD-1 dans la régulation d'évènements transcriptionnels contrôlant la différentiation et l'obtention des fonction effectrices des cellules T CD8+ reste à démontrer. Id2 joue un rôle central dans la différenciation des cellules T CD8+ effectrices. Nous avons émis l’hypothèse que le défaut de maturation observé chez les cellules T CD8+ PD-1 high HIV-spécifiques (CD8+PD-1hi) au cours de l’infection chronique par le virus HIV pouvait être lié à la diminution d’expression du régulateur Id2. Nous avons ainsi démontré que l'engagement de PD-1 contribuait à une diminution d'expression de Id2 et de ses cibles transcriptionnelles. La surexpression de Id2 de ces cellules a permis de restaurer l'expression de marqueurs tels que Granzyme B et Bcl-2 et diminuir l’expression du marqueur de maturation de CD27. La famille des cytokines à chaine gamma joue un rôle clef dans la survie et l’homéostasie des cellules T. Dans ce travail, nous avons démontré que l’IL-15 était unique grâce à ses capacités de stimulation de l’expression d’Id2 et ses propriétés favorisant la survie ainsi que la différenciation des cellules T CD8+ effectrices. l’IL-15 induit la prolifération de toutes les populations de cellules T mémoires provenant de donneurs sains. L’addition de cette cytokine aux sous-populations cellulaires Ttm et Tem a permis leur différenciation en cellules effectrices capables de produire Granzyme B alors que la stimulation par l’IL-15 des cellules Tcm ne favorise pas leur différenciation. Un test de cytotoxicitié par cytométrie en flux nous a permis de confirmer que la stimulation de cellules T CD8+ HIV spécifiques par l’IL-15 favorisait l’expression de Id2 et restaurait les fonctions cytotoxiques des cellules T CD8+ HIV spécifiques. En conclusion, nous avons pour la première fois dans cette thèse défini les mécanismes moléculaires impliqués dans la modulation de l’expression du régulateur transcriptionnel Id2 par l’IL-15. Nous avons également révélé comment l’engagement de PD-1 conduisait a une altération de l’expression et de la fonction d’Id2 et favorisait la diminution des fonctions effectrices des cellules T CD8-HIV spécifiques. Une perspective de traitement avec des agents tels que l’IL-15 ou le bloquage de PD-1, en combinaison avec les traitements conventionnels, pourrait contribuer à une meilleure stimulation des réponses immunes favorisant ainsi la réactivation des cellules T CD8+ et permettant la destruction de cellules T CD4+ infectées de manière latente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid recall of influenza virus-specific CD8+ T cell effector function is protective, although our understanding of T cell memory remains incomplete. Recent debate has focused particularly on the CD62L lymph node homing receptor. The present analysis shows that although functional memory can be established from both CD62Lhi and CD62Llo CD8+ T cell subsets soon after initial encounter between naive precursors and antigen, the optimal precursors are CD8+CD44hiCD25lo immune lymphocytes isolated from draining lymph nodes on day 3.5 after influenza virus infection. Analysis of primed T cells at different times after challenge indicates that the capacity to transfer memory is diminished at the peak of the primary cytotoxic T lymphocyte response, challenging speculations that the transition to memory first requires full differentiation to effector status. It seems that location rather than CD62Lhi/lo phenotype may be the more profitable focus for further dissection of the early establishment of T cell memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis remains a global health problem, in part due to failure of the currently available vaccine, BCG, to protect adults against pulmonary forms of the disease. We explored the impact of pulmonary delivery of recombinant influenza A viruses (rIAVs) on the induction of Mycobacterium tuberculosis (M. tuberculosis)-specific CD4(+) and CD8(+) T-cell responses and the resultant protection against M. tuberculosis infection in C57BL/6 mice. Intranasal infection with rIAVs expressing a CD4(+) T-cell epitope from the Ag85B protein (PR8.p25) or CD8(+) T-cell epitope from the TB10.4 protein (PR8.TB10.4) generated strong T-cell responses to the M. tuberculosis-specific epitopes in the lung that persisted long after the rIAVs were cleared. Infection with PR8.p25 conferred protection against subsequent M. tuberculosis challenge in the lung, and this was associated with increased levels of poly-functional CD4(+) T cells at the time of challenge. By contrast, infection with PR8.TB10.4 did not induce protection despite the presence of IFN-γ-producing M. tuberculosis-specific CD8(+) T cells in the lung at the time of challenge and during infection. Therefore, the induction of pulmonary M. tuberculosis epitope-specific CD4(+), but not CD8(+) T cells, is essential for protection against acute M. tuberculosis infection in the lung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of: Rodriguez D, Gonzalez-Aseguinolaza G, Rodriguez JR et al. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium. PLoS ONE 7(4), e34445 (2012). Recently, a vaccine against malaria was successfully tested in a human Phase III trial. The efficacy of this vaccine formulation, based on the Plasmodium falciparum circumsporozoite protein, was approximately 50% and correlated with the presence of antibodies specific to the infective stages of the malaria parasites. Different strategies are being pursued to improve vaccine efficacy levels. One such strategy is the induction of specific cytotoxic T cells that can destroy the intracellular hepatocyte stages of the malaria parasite. In this study, a novel vaccination protocol was developed to elicit strong immune responses mediated by CD8(+) cytotoxic cells specific to the circumsporozoite protein. As proof-of-concept, the authors used the rodent malaria Plasmodium yoelii parasite. The vaccination strategy consisted of a heterologous prime-boost vaccination regimen involving porcine parvovirus-like particles for priming and the modified vaccinia virus Ankara for the booster immunization, both of which expressed the immunodominant CD8 epitope of the P. yoelii circumsporozoite protein. Results from this experimental model were extremely meaningful. This vaccination strategy led to a significant T-cell immune response mediated by CD8(+) multifunctional T effector and effector-memory cells. However, most importantly for the malaria vaccine development was the fact that following a sporozoite challenge, immunized mice eliminated more than 97% of the malaria parasites during the hepatocyte stages. These results confirm and extend a vast body of knowledge showing that a heterologous prime-boost vaccination strategy can elicit strong CD8(+) T-cell-mediated protective immunity and may increase the efficacy of malaria vaccines.