987 resultados para Cavity ring-up spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In whispering gallery mode resonator sensing applications, the conventional way to detect a change in the parameter to be measured is by observing the steady-state transmission spectrum through the coupling waveguide. Alternatively, sensing based on cavity ring-up spectroscopy, i.e. CRUS, can be achieved transiently. In this work, we investigate CRUS using coupled mode equations and find analytical solutions with a large spectral broadening approximation of the input pulse. The relationships between the frequency detuning, coupling gap and ring-up peak height are determined and experimentally verified using an ultrahigh Q-factor silica microsphere. This work shows that distinctive dispersive and dissipative transient sensing can be realised by simply measuring the peak height of the CRUS signal, which may improve the data collection rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel all-fibre cavity ring down spectroscopy technique is proposed where a tilt fibre Bragg grating (TFBG) or long-period grating (LPG) in the cavity provides sensitivity to surrounding medium. Such configuration with an LPG as the representative was theoretically analyzed. Two spectral bands were identified employable for sensing of surrounding refractive index for a weak LPG while only one band existed for a strong LPG. A TFBG, with enhanced sensitivity compared to usual LPGs, was used in a ring down cavity of 1 m constructed with 2 fibre Bragg gratings as the reflectors and the decay time changed from 220 to 450 ns when the TFBG was immersed into water from air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel all-fibre cavity ring down spectroscopy technique is demonstrated where a tilted fibre Bragg grating in the cavity provides sensitivity to surrounding refractive index. A decay time of 450ns was attained when sensing water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microchannel was inscribed in the fiber of a ring cavity which was constructed using two 0.1%:99.9% couplers and a 10-m fiber loop. Cavity ring down spectroscopy was used to measure the refractive index (RI) of gels infused into the microchannel. The ring down time discloses a nonlinear increase with respect to RI of the gel and sensitivity up to 300 µs/RI unit and an index resolution of 1.4 × 10 was obtained. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microchannel was inscribed in the fiber of a ring cavity which was constructed using two 0.1%:99.9% couplers and a 10-m fiber loop. Cavity ring down spectroscopy was used to measure the refractive index (RI) of gels infused into the microchannel. The ring down time discloses a nonlinear increase with respect to RI of the gel and sensitivity up to 300 µs/RI unit and an index resolution of 1.4 × 10 was obtained. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectroscopic investigation of the gas-phase molecules relevant for the chemistry of the atmosphere and of the interstellar medium has been performed. Two types of molecules have been studied, linear and symmetric top. Several experimental high-resolution techniques have been adopted, exploiting the spectrometers available in Bologna, Venezia, Brussels and Wuppertal: Fourier-Transform-Infrared Spectroscopy, Cavity-Ring-Down Spectroscopy, Cavity-Enhanced-Absorption Spectroscopy, Tunable-Diode-Laser Spectroscopy. Concerning linear molecules, the spectra of a number of isotopologues of acetylene, 12C2D2, H12C13CD, H13C12CD, 13C12CD2, of DCCF and monodeuterodiacetylene DC4H, have been studied, from 320 to 6800 cm-1. This interval covers bending, stretching, overtone and combination bands, the focus on specific ranges depending on the molecule. In particular, the analysis of the bending modes has been performed for 12C2D2 (450-2200 cm-1), 13C12CD2 (450-1700 cm-1), DCCF (320-850cm-1) and DC4H (450-1100 cm-1), of the stretching-bending system for 12C2D2 (450-5500 cm-1) and of the 2nu1 and combination bands up to four quanta of excitation for H12C13CD, H13C12CD and 13C12CD2 (6130-6800 cm-1). In case of symmetric top molecules, CH3CCH has been investigated in the 2nu1 region (6200-6700 cm-1), which is particularly congested due to the huge network of states affected by Coriolis and anharmonic interactions. The bending fundamentals of 15ND3 (450-2700 cm-1) have been studied for the first time, characterizing completely the bending states, v2 = 1 and v4 = 1, whereas the analysis of the stretching modes, which evidenced the presence of several perturbations, has been started. Finally, the fundamental band nu4 of CF3Br in the 1190-1220 cm-1 region has been investigated. Transitions belonging to the CF379Br and CF381Br molecules have been identified since the spectra were recorded using a sample containing the two isotopologues in natural abundance. This allowed the characterization of the v4 = 1 state for both isotopologues and the evaluation of the bromine isotopic splitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of near-infrared water vapour continuum using continuous wave cavity ring down spectroscopy (cw- CRDS) have been performed at around 10611.6 and 10685:2 cm1. The continuum absorption coefficients for N2- broadening have been determined for two temperatures and wavenumbers. These results represent the first near-IR continuum laboratory data determined within the complex spectral environment in the 940nm water vapour band and are in reasonable agreement with simulations using the semiempirical CKD formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth’s atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm−1) and include reference to the window centred on 2600 cm−1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback – cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum – as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In low-accumulation regions, the reliability of d18O-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen station, Dronning Maud Land, Antarctica. Analysing d18O in two 50 m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the hundred-metre scale. This data set includes the complete trench oxygen isotope record together with the meta data used in the study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of the continental carbon budget is essential to predict future climate change. In order to quantify CO₂ and CH₄ fluxes at the regional scale, a measurement system was installed at the former radio tower in Beromünster as part of the Swiss greenhouse gas monitoring network (CarboCount CH). We have been measuring the mixing ratios of CO₂, CH₄ and CO on this tower with sample inlets at 12.5, 44.6, 71.5, 131.6 and 212.5 m above ground level using a cavity ring down spectroscopy (CRDS) analyzer. The first 2-year (December 2012–December 2014) continuous atmospheric record was analyzed for seasonal and diurnal variations and interspecies correlations. In addition, storage fluxes were calculated from the hourly profiles along the tower. The atmospheric growth rates from 2013 to 2014 determined from this 2-year data set were 1.78 ppm yr⁻¹, 9.66 ppb yr⁻¹ and and -1.27 ppb yr⁻¹ for CO₂, CH₄ and CO, respectively. After detrending, clear seasonal cycles were detected for CO₂ and CO, whereas CH₄ showed a stable baseline suggesting a net balance between sources and sinks over the course of the year. CO and CO₂ were strongly correlated (r² > 0.75) in winter (DJF), but almost uncorrelated in summer. In winter, anthropogenic emissions dominate the biospheric CO₂ fluxes and the variations in mixing ratios are large due to reduced vertical mixing. The diurnal variations of all species showed distinct cycles in spring and summer, with the lowest sampling level showing the most pronounced diurnal amplitudes. The storage flux estimates exhibited reasonable diurnal shapes for CO₂, but underestimated the strength of the surface sinks during daytime. This seems plausible, keeping in mind that we were only able to calculate the storage fluxes along the profile of the tower but not the flux into or out of this profile, since no Eddy covariance flux measurements were taken at the top of the tower.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive environmental monitoring program was conducted in the Ojo Guareña cave system (Spain), one of the longest cave systems in Europe, to assess the magnitude of the spatiotemporal changes in carbon dioxide gas (CO2) in the cave–soil–atmosphere profile. The key climate-driven processes involved in gas exchange, primarily gas diffusion and cave ventilation due to advective forces, were characterized. The spatial distributions of both processes were described through measurements of CO2 and its carbon isotopic signal (δ13C[CO2]) from exterior, soil and cave air samples analyzed by cavity ring-down spectroscopy (CRDS). The trigger mechanisms of air advection (temperature or air density differences or barometric imbalances) were controlled by continuous logging systems. Radon monitoring was also used to characterize the changing airflow that results in a predictable seasonal or daily pattern of CO2 concentrations and its carbon isotopic signal. Large daily oscillations of CO2 levels, ranging from 680 to 1900 ppm day−1 on average, were registered during the daily oscillations of the exterior air temperature around the cave air temperature. These daily variations in CO2 concentration were unobservable once the outside air temperature was continuously below the cave temperature and a prevailing advective-renewal of cave air was established, such that the daily-averaged concentrations of CO2 reached minimum values close to atmospheric background. The daily pulses of CO2 and other tracer gases such as radon (222Rn) were smoothed in the inner cave locations, where fluctuation of both gases was primarily correlated with medium-term changes in air pressure. A pooled analysis of these data provided evidence that atmospheric air that is inhaled into dynamically ventilated caves can then return to the lower troposphere as CO2-rich cave air.