905 resultados para Cave


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy and FT-IR imaging analyses of cave wall pigment samples from north Queensland (Australia) indicate that some hand stencils were undertaken during a dry environmental phase indicating late Holocene age. Other, earlier painting episodes also took place during dry environmental periods of the terminal Pleistocene and/or early Holocene. These results represent a rare opportunity to attain chronological information for rock art in conditions where insufficient carbon is present for radiocarbon dating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral ardealite Ca2(HPO4)(SO4)•4H2O is a ‘cave’ mineral and is formed through the reaction of calcite with bat guano. The mineral shows disorder and the composition varies depending on the origin of the mineral. Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral ardealite. The Raman spectrum is very different from that of gypsum. Bands are assigned to SO42- and HPO42- stretching and bending modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry combined with evolved gas mass spectrometry has been used to ascertain the stability of the ‘cave’ mineral brushite. X-ray diffraction shows that brushite from the Jenolan Caves is very pure. Thermogravimetric analysis coupled with ion current mass spectrometry shows a mass loss at 111°C due to loss of water of hydration. A further decomposition step occurs at 190°C with the conversion of hydrogen phosphate to a mixture of calcium ortho-phosphate and calcium pyrophosphate. TG-DTG shows the mineral is not stable above 111°C. A mechanism for the formation of brushite on calcite surfaces is proposed, and this mechanism has relevance to the formation of brushite in urinary tracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newberyite Mg(PO3OH)•3H2O is a mineral found in caves such as from Moorba cave, Jurien Bay, Western Australia, the Skipton Lava tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura , Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of ‘cave’ minerals. The intense sharp band at 982 cm-1 is assigned to the PO43- ν1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm-1 are assigned to the PO43- ν3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm-1 are attributed to the PO43- ν4 bending modes. An intense Raman band for newberyite at 398 cm-1 with a shoulder band at 413 cm-1 is assigned to the PO43- ν2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728Å (3267 cm-1), 2.781Å (3374cm-1), 2.868Å (3479 cm-1), and 2.918Å (3515 cm-1). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral stercorite H(NH4)Na(PO4)·4H2O. The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in the South of Western Australia. These caves have been in existence for eons of time and have been dated at more than 550 million years old. The mineral is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm−1 defines the presence of phosphate in the mineral. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm−1. Raman spectroscopy shows the mineral is based upon the phosphate anion and not the hydrogen phosphate anion. Raman and infrared bands are found and assigned to PO43−, H2O, OH and NH stretching vibrations. The detection of stercorite by Raman spectroscopy shows that the mineral can be readily determined; as such the application of a portable Raman spectrometer in a ‘cave’ situation enables the detection of minerals, some of which may remain to be identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular structure of the mineral archerite ((K,NH4)H2PO4) has been determined and compared with that of biphosphammite ((NH4,K)H2PO4). Raman spectroscopy and infrared spectroscopy has been used to characterise these ‘cave’ minerals. Both minerals originated from the Murra-el-elevyn Cave, Eucla, Western Australia. The mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. The Raman band at 981 cm-1 is assigned to the HOP stretching vibration. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. The molecular structure of the two minerals appear to be very similar, and it is therefore concluded that the two minerals are identical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to mimic the chemical reactions in cave systems, the analogue of the mineral stercorite H(NH4)Na(PO4)•4H2O has been synthesised. X-ray diffraction of the stercorite analogue matches the stercorite reference pattern. A comparison is made with the vibrational spectra of synthetic stercorite analogue and the natural Cave mineral. The mineral in nature is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm-1 (Cave) and 922 cm-1 (synthesised) defines the presence of hydrogen phosphate in the mineral. In the synthetic stercorite analogue, additional bands are observed and are attributed to the dihydrogen and phosphate anions. The vibrational spectra of synthetic stercorite only partly match that of the natural stercorite. It is suggested that natural stercorite is more pure than that of synthesised stercorite. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm-1. Raman spectroscopy shows the stercorite mineral is based upon the hydrogen phosphate anion and not the phosphate anion. Raman and infrared bands are found and assigned to PO43-, H2O, OH and NH stretching vibrations. Raman spectroscopy shows the synthetic analogue is similar to the natural mineral. A mechanism for the formation of stercorite is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral ardealite and to ascertain the thermal stability of this ‘cave’ mineral. The mineral ardealite Ca2(HPO4)(SO4)•4H2O is formed through the reaction of calcite with bat guano. The mineral shows disorder and the composition varies depending on the origin of the mineral. Thermal analysis shows that the mineral starts to decompose over the temperature range 100 to 150°C with some loss of water. The critical temperature for water loss is around 215°C and above this temperature the mineral structure is altered. It is concluded that the mineral starts to decompose at 125°C, with all waters of hydration being lost after 226°C. Some loss of sulphate occurs over a broad temperature range centred upon 565°C. The final decomposition temperature is 823°C with loss of the sulphate and phosphate anions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral newberyite Mg(PO3OH)•3H2O is a mineral that has been found in caves such as the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia), Moorba cave, Jurien Bay, Western Australia, and in the Petrogale Cave (Madura , Eucla, Western Australia). Because these minerals contain water, the minerals lend themselves to thermal analysis. The mineral newberyite is found to decompose at 145°C with a water loss of 31.96%, a result which is very close to the theoretical value. The result shows that the mineral is not stable in caves where the temperature exceeds this value. The implication of this result rests with the removal of kidney stones, which have the same composition as newberyite. Point heating focussing on the kidney stone results in the destruction of the kidney stone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetric analysis has been used to determine the thermal stability of the mineral stercorite H(NH4)Na(PO4)·4H2O. The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in the South of Western Australia. The mineral is formed by the reaction of bat guano chemicals on calcite substrates. Upon thermal treatment the mineral shows a strong decomposition at 191°C with loss of water and ammonia. Other mass loss steps are observed at 158, 317 and 477°C. Ion current curves indicate a gain of CO2 at higher temperature and are attributed to the thermal decomposition of calcite impurity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral crandallite CaAl3(PO4)2(OH)5•(H2O) and to ascertain the thermal stability of this ‘cave’ mineral. X-ray diffraction proves the presence of the mineral and identifies the products after thermal decomposition. The mineral crandallite is formed through the reaction of calcite with bat guano. Thermal analysis shows that the mineral starts to decompose through dehydration at low temperatures at around 139°C while dehydroxylation occurs over the temperature range 200 to 700°C with loss of OH units. The critical temperature for OH loss is around 416°C and above this temperature the mineral structure is altered. Some minor loss of carbonate impurity occurs at 788°C. This study shows the mineral is unstable above 139°C. This temperature is well above the temperature in caves, which have a maximum temperature of 15°C. A chemical reaction for the synthesis of crandallite is offered and the mechanism for the thermal decomposition is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to mimic the formation of archerite in cave minerals, the mineral analogue has been synthesised. The cave mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. X-ray diffraction proves that the synthesised archerite analogue was pure. The vibrational spectra of the synthesised mineral are compared with that of the natural cave mineral. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching and bending vibrations. The Raman band at 917 cm-1 is assigned to the HOP stretching vibration of the H2PO4- units. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. Vibrational spectroscopy enables the molecular structure of archerite to be analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral brushite has been synthesised by mixing calcium ions and hydrogen phosphate anions to mimic the reactions in a Cave. The vibrational spectra of the synthesised brushite were compared with that of the natural Cave mineral. Bands attributable to the PO43- and HPO42- anions are observed. Brushite, both synthetic and natural, is characterised by an intense sharp band at 985 cm-1 with a shoulder at 1000 cm-1. Characteristic bending modes are observed in the 300 to 600 cm-1 region. The spectra of the synthesised brushite matches very well the spectrum of brushite from the Moorba Cave, Western Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monetite is a phosphate mineral formed by the reaction of the chemicals in bat guano with calcite substrates and is commonly found in caves. The analog of the mineral monetite CaHPO4 has been synthesized and the Raman and infrared spectra of the natural monetite originating from the Murra-el-elevyn Cave, Eucla, Western Australia, compared. Monetite is characterized by a complex set of phosphate bands that arise because of two sets of pairs of phosphate units in the unit cell. Raman and infrared bands are assigned to HPO4(2-), OH stretching and bending vibrations. Infrared bands at 1346 and 1402 cm−1 are assigned to POH deformation modes. Vibrational spectroscopy confirms the presence of monetite in the cave system.