998 resultados para Cathodic protection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of laboratory and field trials on cathodic protection of aluminium sheathing in fishing boats by ternary aluminium anodes are presented. The high negative potential of 1.06 V with respect to saturated calomel electrode, its appreciably low anodic polarization and high current output are favourable factors for using the ternary aluminium anodes. The low rate of consumption of the anode material under service trials attests its economic viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nearly 10,000 mechanised fishing trawlers mostly built of wood and about 100 trawlers built of steel besides a few fiberglass reinforced plastic and a couple of ferro-cement boats constitute the modern fishing fleet of India at present. Metallic corrosion in sea water is a very well-known phenomenon in all ships and various other marine structures; the exact financial loss and the material breakdowns have never been fully realized among the trawler owners in India. The Central Institute of Fisheries Technology at Cochin has been studying these problems for some years and has been able to assess the significance of underwater corrosion particularly of the hull below water line in the trawlers and suitable remedial measures have been suggested in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a new mercury-free ternary aluminum anode (CIFTAL) for cathodic protection of marine structures is described. The new anode demonstrated a current efficiency of 83.5% to 85.4% in a current density range of 5.6 to 166.7 mAdmˉ². The current efficiency remained practically stable at 1.4 mAdmˉ² over a test period of 300 days. The service trials of the anode on steel trawlers and aluminum (Indal M 57 S) sheathed wooden boats have shown satisfactory performance in terms of uniform dissolution, current efficiency and driving voltage. In the wake of legislations restricting the use of anodes containing mercury in an endeavor to control the mercury pollution of the near shore aquatic environment, the new anode (CIFTAL) with its stable current output and high current efficiency merits significance in marine cathodic protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of cathodic protection in reinforced concrete is becoming increasingly common with such systems being installed on a number of structures throughout the United Kingdom and Ireland. However the prescribed design lives (or service life) of each cathodic protection system vary widely. The aim of this project was to assess the effectiveness of a sacrificial anode cathodic protection system and to predict its design life through a series of laboratory based experiments. The experimental plan involved casting a number of slabs which represented a common road bridge structure. The corrosion of the steel within the experimental slabs was then accelerated prior to installation of a cathodic protection system. During the experiment corrosion potential of the steel reinforcement was monitored using half-cell measurement. Additionally the current flow between the cathodic protection system and the steel reinforcement was recorded to assess the degree of protection. A combination of theoretical calculations and experimental results were then collated to determine the design life of this cathodic protection system. It can be concluded that this sacrificial anode based cathodic protection system was effective in halting the corrosion of steel reinforcement in the concrete slabs studied. Both the corrosion current and half-cell potentials indicated a change in passivity for the steel reinforcement once sacrificial anodes were introduced. The corrosion current was observed to be sensitive to the changes to the exposure environment. Based on the experimental variables studied the design life of this sacrificial anode can be taken as 26 to 30 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to minimize the risk of failures or major renewals of hull structures during the ship's expected life span, it is imperative that the precaution must be taken with regard to an adequate margin of safety against any one or combination of failure modes including excessive yielding, buckling, brittle fracture, fatigue and corrosion. The most efficient system for combating underwater corrosion is 'cathodic protection'. The basic principle of this method is that the ship's structure is made cathodic, i.e. the anodic (corrosion) reactions are suppressed by the application of an opposing current and the ship is there by protected. This paper deals with state of art in cathodic protection and its programming in ship structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic coatings have been used in conjunction with cathodic protection as the most economical method of corrosion protection by the oil and gas pipeline industry. In a bid to prolong the life of the pipelines, the degradation and failure of pipeline coatings under the effects of major influencing factors including mechanical stress, the environmental corrosivity and cathodic protection have been extensively investigated over the past decades. This paper provides an overview of recent research for understanding coating degradation under the effect of these factors, either individually or in combination. Electrochemical impedance spectroscopy remains the primary and the most commonly used technique of studying the degradation of organic coatings, although there have been attempts to use other techniques such as electrochemical polarization (both dynamic and static), electrochemical noise, Scanning Kelvin Probe, Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Dynamic Mechanical Analyser. Major knowledge and technological gaps in the investigation of the combined effects of mechanical stress, environmental corrosivity and cathodic protection on coating degradation have been identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathodic protection (CP) failure due to excursions from safe CP levels is a challenge for the protection and maintenance of buried energy pipelines. Although research shows that stray current is a major factor contributing to CP failure, there is little consensus on how 'big' the excursions (either in magnitude, length or frequency) need to be in order to cause pipeline corrosion problems. This uncertainty has caused difficulties in selecting suitable parameters in relevant industry standards. This paper provides a brief review of past research on different factors affecting CP efficiency. Preliminary results from new electrochemical cells designed to develop an understanding of how CP excursions away from the 'safe' level can lead to corrosion problems are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 A new method has been developed to measure metal corrosion rates and their distribution under cathodic protection (CP). This method uses an electrochemically integrated multi-electrode array to take local measurements of cathodic current density while simulating a continuous metallic surface. The distribution of cathodic current densities obtained under CP was analyzed to estimate the anodic current component at each electrode of the array. Corrosion patterns determined by this new method have shown good correlation with visual inspection and surface profilometry of the multi-electrode array surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new method for measuring localized corrosion under disbonded coatings by means of an electrochemical sensor, denoted differential aeration sensor (DAS). It measures the distribution of electrochemical currents over an electrode array surface partially covered by a crevice that simulates a disbonded coating. The DAS has been evaluated using immersion tests at open circuit and under cathodic protection (CP) conditions. Under both conditions, anodic as well as cathodic current densities were detected within the crevice. A fundamental understanding for the detection of anodic currents under CP has been explained in terms of basic electrochemistry. Based on the current distribution data provided by the sensor, two different analysis methods have been used to estimate corrosion and its distribution. These methods consisted of a direct application of Faraday's Law to the anodic currents detected by the array, and on a sensor-specific method denoted corrected currents' method. It has been demonstrated that under diffusion controlled conditions this latter method produces a better corrosion estimation than the direct application of Faraday's Law. The corrected currents' method allowed the estimation of corrosion patterns outside the crevice under CP. Good correlation between electrochemical calculations and surface profilometry results has been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015 Elsevier Ltd. All rights reserved. Factors affecting the effectiveness of cathodic protection under disbonded coatings were studied using a partially covered two dimensional electrode array that simulates a crevice under a disbonded coating and allows for the mapping of electrochemical currents under the influence of cathodic protection (CP). This technique enabled the study of the effects of major factors, including crevice gap size, solution conductivity and applied CP potential on the distribution and evolution of CP currents over the electrode array surface. The effect of each of these factors on the overall current distribution profile has been explained using a new electrochemical model. This model suggests that, despite the detrimental effect of cathodic shielding, the steel under disbonded areas could still be protected, independent of the crevice geometry and solution resistivity, by means of concentration polarization instead of direct electrochemical polarization. A set of conditions for maintaining CP potentials more negative than -850 mVCSE along disbonded coating areas was deduced from the proposed model and validated against potential profiles available in the literature. The possible practical implications of the current mapping technique used in this study for developing in-situ CP monitoring sensors has also been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

electrical interference signals on CP and steel corrosion using newly designed electrochemical corrosion cells; as well as to monitoring cathodic disbondment of coatings using electrochemical impedance spectroscopy. Typical results from using these new techniques for measuring stray current corrosion and for probing the cathodic disbondment of pipeline coatings have been briefly discussed.