940 resultados para Catheter Ablation
Complex Impedance Measurement During RF Catheter Ablation: A More Accurate Measure of Power Delivery
Resumo:
Background: Catheter ablation procedures for atrial fibrillation (AF) may frequently require long fluoroscopic times. We sought to undertake a review of radiation safety practice in our Cardiac Electrophysiology Laboratory and implement changes to minimize fluoroscopic doses. We also sought to compare the results with radiation doses for percutaneous coronary intervention (PCI) cases performed in our hospital. Methods: Fluoroscopic times and doses for AF ablation procedures performed by a single operator on a Philips Integris H3000 image-intensifier were analysed for 11-month period. Results were compared with all PCI procedures performed over a similar period by multiple operators on a Philips Integris Allura FD system. Comprehensive review of radiation practice in the Electrophysiology laboratory identified the potential to reduce pulse frame rates and doses, and to narrow the field of interest without impacting the performance of the procedure. These changes were implemented and results analysed after a further 11 months. Results: In the pre-intervention period 50 AF catheter ablations had a mean fluoroscopic time of 86.4 min and mean fluoroscopic dose 68.4 Gy/cm2. Post-intervention 75 procedures had a mean fluorosocopic time of 68.9 min (p < 0.0001) and mean dose of 14.3 Gy/cm2 (p < 0.0001) 128 PCI procedures had a mean combined fluoroscopic and image acquisition time of 10.0 min and mean total dose 38.8 Gy/cm2. Conclusions: Catheter ablation procedures for AF may require lengthy use of fluoroscopy but simple modifications to radiation practice can result in marked reductions in radiation dose that compare favourably with PCI case doses
Resumo:
Ventricular tachycardia (VT) late after myocardial infarction is an important contributor to morbidity and mortality. This prospective multicenter study assessed the efficacy and safety of electroanatomical mapping in combination with open-saline irrigated ablation technology for ablation of chronic recurrent mappable and unmappable VT in remote myocardial infarction.
Resumo:
In patients with ventricular tachycardia (VT) and a history of myocardial infarction, intervention with an implantable cardioverter defibrillator (ICD) can prevent sudden cardiac death and thereby reduce total mortality. However, ICD shocks are painful and do not provide complete protection against sudden cardiac death. We assessed the potential benefit of catheter ablation before implantation of a cardioverter defibrillator.
Resumo:
VT Ablation in Apical Hypertrophic Cardiomyopathy.
Resumo:
Mapping and ablation of atrial tachycardias (ATs) secondary to catheter ablation of atrial fibrillation (AF) is often challenging due to the complex atrial substrate, different AT mechanisms, and potential origin not only in the left atrium (LA) but also from the right atrium (RA) and the adjacent thoracic veins.
Resumo:
As the population ages, recurrent ventricular tachycardia (VT) is increasingly encountered in elderly patients with ischemic heart disease. Radiofrequency catheter ablation is useful for reducing VT therapy in patients with an implantable defibrillator. The utility of radiofrequency catheter ablation in the elderly is not well defined.
Resumo:
The aims of the study were (i) to assess the characteristics of patients selected for atrial fibrillation (AF) ablation as first-line therapy, (ii) to identify current clinical criteria for such a strategy, and (iii) to analyse the outcome compared with patients who had failure of antiarrhythmic drug (AAD) therapy prior to ablation.
Resumo:
In patients with Ebstein's anomaly (EA) arrhythmias are frequently encountered. Although most arrhythmias can be targeted with catheter ablation, specific issues render the procedure more challenging in EA. This study examines the mechanisms of the different arrhythmias related to EA and the outcome after catheter ablation.
Resumo:
BACKGROUND: Current concepts of catheter ablation for atrial fibrillation (AF) commonly use three-dimensional (3D) reconstructions of the left atrium (LA) for orientation, catheter navigation, and ablation line placement. OBJECTIVES: The purpose of this study was to compare the 3D electroanatomic reconstruction (Carto) of the LA, pulmonary veins (PVs), and esophagus with the true anatomy displayed on multislice computed tomography (CT). METHODS: In this prospective study, 100 patients undergoing AF catheter ablation underwent contrast-enhanced spiral CT scan with barium swallow and subsequent multiplanar and 3D reconstructions. Using Carto, circumferential plus linear LA lesions were placed. The esophagus was tagged and integrated into the Carto map. RESULTS: Compared with the true anatomy on CT, the electroanatomic reconstruction accurately displayed the true distance between the lower PVs; the distances between left upper PV, left lower PV, right lower PV, and center of the esophagus; the longitudinal diameter of the encircling line around the funnel of the left PVs; and the length of the mitral isthmus line. Only the distances between the upper PVs, the distance between the right upper PV and esophagus, and the diameter of the right encircling line were significantly shorter on the electroanatomic reconstructions. Furthermore, electroanatomic tagging of the esophagus reliably visualized the true anatomic relationship to the LA. On multiple tagging and repeated CT scans, the LA and esophagus showed a stable anatomic relationship, without relevant sideward shifting of the esophagus. CONCLUSION: Electroanatomic reconstruction can display with high accuracy the true 3D anatomy of the LA and PVs in most of the regions of interest for AF catheter ablation. In addition, Carto was able to visualize the true anatomic relationship between the esophagus and LA. Both structures showed a stable anatomic relationship on Carto and CT without relevant sideward shifting of the esophagus.
Resumo:
The technique of transseptal puncture for catheter ablation of atrial fibrillation after percutaneous closure of a foramen ovale with the Amplatzer Occluder is demonstrated based on 2 representative cases.
Resumo:
BACKGROUND: Currently, only anecdotal information exists on the presentation and outcome of coronary arterial injury after ablation procedures. METHODS AND RESULTS: Four patients who sustained coronary artery injury of a cohort of patients undergoing 4655 consecutive ablation procedures (0.09%) are described. The patients' mean age was 45+/-11 years, and 1.8+/-0.5 prior ablation attempts had been unsuccessful. Coronary injury occurred from epicardial ventricular tachycardia ablation in 2 patients (irrigated radiofrequency ablation in one and cryoablation in the other) and ablation within the middle cardiac vein with irrigated radiofrequency in 2 patients. All involved branches of the right coronary artery. Acute occlusion presenting with ST-segment elevation immediately after ablation was recognized during the procedure in 2 cases. Occlusion failed to respond to nitroglycerin or balloon dilation, and stenting was required in both cases. Acute myocardial infarction occurred 2 weeks after epicardial ablation as a result of occlusion of a right ventricular branch of the right coronary artery giving rise to the posterior descending coronary artery in 1 patient. A moderate asymptomatic stenosis was seen on angiography after epicardial cryoablation in 1 patient. All patients recovered and remained asymptomatic from the coronary injury and arrhythmias during 37+/-53 months of follow-up. CONCLUSIONS: Coronary arterial injury after ablation procedures is rare. It may present acutely or several weeks after an ablation procedure. Acute occlusion appears to require coronary stenting. Unanticipated anatomic variations can predispose to coronary injury.