38 resultados para Catechins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The health benefits of green tea (Camellia sinensis) catechins are becoming increasingly recognised. Amongst the proposed benefits are the maintenance of endothelial function and vascular homeostasis and an associated reduction in atherogenesis and CVD risk. The mounting evidence for the influential effect of green tea catechins on vascular function from epidemiological, human intervention and animal studies is subject to review together with exploration of the potential mechanistic pathways involved. Epigallocatechin-3-gallate, one of the most abundant and widely studied catechin found in green tea, will be prominent in the present review. Since there is a substantial inconsistency in the published data with regards to the impact of green tea catechins on vascular function, evaluation and interpretation of the inter- and intra-study variability is included. In conclusion, a positive effect of green tea catechins on vascular function is becoming apparent. Further studies in animal and cell models using physiological concentrations of catechins and their metabolites are warranted in order to gain some insight into the physiology and molecular basis of the observed beneficial effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model oil-in-water emulsions containing epicatechin (EC) and epigallocatechin gallate (EGCG) showed a synergistic increase in stability in emulsions containing added albumin. EGCG showed a stronger synergy (35%) with ovalbumin than did EC. Oxidation of the oil was monitored by determining peroxide values and hexanal contents. The effect of bovine serum albumin (BSA) on model oil-in-water emulsions containing each of the green tea catechins [epicatechin gallate (ECG), EGCG, EC and epigallocatechin (EGC)] was studied during storage at 30 degrees C. The green tea catechins showed moderate antioxidant activity in the emulsions with the order of activity being ECG approximate to EGCG > EC > EGC. Although BSA had very little antioxidant activity in the absence of phenolic antioxidants, the combination of BSA with each of the catechins showed strong antioxidant activity. BSA, in combination with EC, EGCG or EGC, showing the strongest antioxidant activity with good stability after 45 days storage. Model experiments with the catechins stored with BSA in aqueous solutions confirmed that protein-catechin adducts with antioxidant activity were formed between the catechins and protein. The antioxidant activity of the separated protein-catechin adducts increased strongly with storage time and was stronger for EGCG and ECG than for EC or EGC. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Green tea is thought to possess many beneficial effects on human health. However, the extent of green tea polyphenol biotransformation may affect its proposed therapeutic effects. Catechol-O-methyltransferase (COMT), the enzyme responsible for polyphenolic methylation, has a common polymorphism in the genetic code at position 158 reported to result in a 40% reduction in enzyme activity in in vitro studies. The current preliminary study was designed to investigate the impact of COMT genotype on green tea catechin absorption and metabolism in humans. Methods Twenty participants (10 of each homozygous COMT genotype) were recruited, and plasma concentration profiles were produced for epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) and 4′-O-methyl EGCG after 1.1 g of Sunphenon decaffeinated green tea extract (836 mg green tea catechins), with a meal given after 60 min. Results For the entire group, EGCG, EGC, EC, ECG and 4′-O-methyl EGCG reached maximum concentrations of 1.09, 0.41, 0.33, 0.16 and 0.08 μM at 81.5, 98.5, 99.0, 85.5 and 96.5 min, respectively. Bimodal curves were observed for the non-gallated green tea catechins EGC and EC as opposed to single-peaked curves for the gallated green tea catechins EGCG and ECG. No significant parametric differences between COMT genotype groups were found. Conclusions In conclusion, the COMT Val(158/108)Met does not appear to have a dramatic influence on EGCG absorption and elimination. However, further pharmacokinetic research is needed to substantiate these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sulfated-beta-cyclodextrin (s-beta-CD) modified reduced flow micellar electrokinetic chromatography (RF-MEKC) method was developed and validated for the determination of catechins in green tea. The optimal electrolyte consisted of 0.2% triethylamine, 50 mmol/L SDS and 0.8% s-beta-CD (pH = 2.9), allowing baseline separation of five catechins in 4 min. The samples and standards were injected at 0.6 psi for 5 s under constant voltage of -30 kV. Sample preparation simply involved extraction of 2 g of tea with 200 mL water at 95 C under constant stirring for 5 min. The method demonstrated excellent performance, with limits of detection (LOD) and quantification (LOQ) of 0.02-0.1 and 0.1-0.5 mu g/mL, respectively, and recovery percentages of 94-101%. The method was applied to six samples of Brazilian green tea infusions. Epigallocatechin gallate (23.4-112.4 mu g/mL) was the major component, followed by epigallocatechin (18.4-78.9 mu g/mL), epicatechin gallate (5.6-29.6 mu g/mL), epicatechin (4.6-14.5 mu g/mL) and catechin (3.2-8.2 mu g/mL). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epilobium parviflorum Schreb. (Onagraceae) is used for the treatment of benign prostatic hyperplasia (BPH), which is regarded as an endocrine disorder caused by age-related hormone imbalance and increased oxidative damage [1,2,3]. Epilobium can moderate the obstructive and the irritative symptoms of BPH [1] but its biological action is not entirely identified. E. parviflorum is rich in phytosterols, flavonoids (myricetin, quercetin, kaempferol and their glycosides), phenolic acids, catechins, ellagi- and gallotannins [4]. The potential biological effects of Epilobium parviflorum Schreb. have been investigated, in respect to its antioxidant, anti-inflammatory, enzyme-inhibitory and anti-androgenic effect. The whole-plant water extract showed higher antioxidant effect (IC50=1.65±0.05µg/mL) in DPPH assay than Trolox or ascorbic acid and inhibited the lipid peroxidation examined in TBA assay (IC50=2.31±0.18mg/mL). In concentrations 0.20-15.00µg/mL the extract possessed a protective effect comparable to catalase enzyme (2500 IU/mL), against oxidative damage generated on fibroblast cells. The examination of the COX-inhibitory effect showed that E. parviflorum had an anti-inflammatory effect (IC50=1.38±0.08µg/mL). Investigation of steroid receptor binding ability and the aromatase enzyme-inhibition showed negative results in the concentration range examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binding parameters for the interactions of four types of tannins: tea catechins, grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins,and sorghum procyanidins (mDP=17), with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction with gelatin were in the range 10(4) to 10(6) M-1 and in the order: sorghum procyanidins > grape seed proanthocyanidins > mimosa 5-deoxy proanthocyanidins > tea catechins. Interaction with BSA was generally weaker, with equilibrium binding constants of <= 10(3) M-1 for grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins and tea catechins, and 10(4) M-1 for the sorghum procyanidins. In all cases the interactions with proteins were exothermic and involved multiple binding sites on the protein. The data are discussed in relation to the structures and the known nutritional effects of the condensed tannins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tea polyphenols, especially the catechins, are potent antimicrobial and antioxidant agents, with positive effects on human health. White tea is one of the less studied teas but the flavour is more accepted than that of green tea in Europe. The concentrations of various catechins in 13 different kinds of infusion were determined by capillary electrophoresis. The total polyphenol content (Folin-Ciocalteu method), the trolox equivalent antioxidant capacity (TEAC value determined with the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation) and the inhibitory effects of infusions on the growth of some microorganisms were determined. Five different infusions (black, white, green and red teas and rooibos infusion) were added to a model food system, comprising a sunflower oil-in-water emulsion containing 0% or 0.2% bovine serum albumin (BSA), and the oxidative stability was studied during storage at 37 degrees C. Oxidation of the oil was monitored by determination of the peroxide value. The highest radical-scavenging activity observed was for the green and white teas. Emulsions containing these extracts from these teas were much more stable during storage when BSA was present than when it was not present, even though BSA itself did not provide an antioxidant effect (at 0.2% concentration). Rooibos infusion did not show the same synergy with BSA. Green tea and white tea showed similar inhibitions of several microorganisms and the magnitude of this was comparable to that of the commercial infusion 2 (C.I.2), "te de la belleza". This tea also had an antioxidant activity comparable to green tea. (C) 2007 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is considerable interest in the bioavailability of flavan-3-ols such as tea catechins and their bioactivity in vivo. Although flavanols such as catechin and epicatechin have long been characterized as powerful antioxidants in vitro, evidence suggests that these compounds undergo significant metabolism and conjugation during absorption in the small intestine and in the colon. In the small intestine these modifications lead primarily to the formation of glucuronide conjugates that are more polar than the parent flavanol and are marked for renal excretion. Other phase II processes lead to the production of O-methylated forms that have reduced antioxidant potential via the methylation of the B-ring catechol. Significant modification of flavanols also occurs in the colon where the resident microflora degrade them to smaller phenolic acids, some of which may be absorbed. Cell, animal and human studies have confirmed such metabolism by the detection of flavanol metabolites in the circulation and tissues. This review will highlight the major sites of flavanol metabolism in the gastrointestinal tract and the processes that give rise to potential bioactive forms of flavan-3-ols in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The beneficial effects of green tea catechins, such as the proposed improvement in endothelial function, may be influenced by phase II metabolism during and after absorption. The methylation enzyme, catechol-O-methyltransferase (COMT), has a missense mutation rs4680 (G to A), proposed to result in a 40 % reduction in enzyme activity. In the present pilot study, twenty subjects (ten of each homozygous COMT genotype) were recruited. Green tea extract capsules (836 mg green tea catechins) were given in a fasted state, and a high-carbohydrate breakfast was given after 60 min. Blood samples and vascular function measurements were taken at regular intervals. The change in digital volume pulse stiffness index (SI) from baseline was shown to be different between genotype groups at 120 and 240 min, with a lower SI in the GG individuals (P ≤ 0·044). The change in blood pressure from baseline also differed between genotype groups, with a greater increase in systolic (P = 0·023) and diastolic (P = 0·034) blood pressure at 120 min in the GG group. The AA group was shown to have a greater increase in insulin concentrations at 120 min (P = 0·019) and 180 min (P = 0·008) compared with baseline, despite similar glucose profiles. No genotypic differences were found in vascular reactivity measured using laser Doppler iontophoresis, total nitrite, lipids, plasma total antioxidant capacity or inflammatory markers after ingestion of the green tea extract. In conclusion, SI and insulin response to the glucose load differed between the COMT genotype groups, and this may be suggestive of a green tea extract and genotype interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SCOPE: Evidence for the benefits of green tea catechins on vascular function is inconsistent, with genotype potentially contributing to the heterogeneity in response. Here, the impact of the catechol-O-methyltransferase (COMT) genotype on vascular function and blood pressure (BP) after green tea extract ingestion are reported. METHODS AND RESULTS: Fifty subjects (n = 25 of the proposed low-activity [AA] and of the high-activity [GG] COMT rs4680 genotype), completed a randomized, double-blind, crossover study. Peripheral arterial tonometry, digital volume pulse (DVP), and BP were assessed at baseline and 90 min after 1.06 g of green tea extract or placebo. A 5.5 h and subsequent 18.5 h urine collection was performed to assess green tea catechin excretion. A genotype × treatment interaction was observed for DVP reflection index (p = 0.014), with green tea extract in the AA COMT group attenuating the increase observed with placebo. A tendency for a greater increase in diastolic BP was evident at 90 min after the green tea extract compared to placebo (p = 0.07). A genotypic effect was observed for urinary methylated epigallocatechin during the first 5.5 h, with the GG COMT group demonstrating a greater concentration (p = 0.049). CONCLUSION: Differences in small vessel tone according to COMT genotype were evident after acute green tea extract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pharmacokinetic studies have become an integral part of modern drug development, but these studies are not regulatory needs for herbal remedies. This paper updates our current knowledge on the disposition pathways and pharmacokinetic properties of commonly used herbal medicines in humans. To retrieve relevant data, the authors have searched through computer-based literatures by full text search in Medline (via Pubmed), ScienceDirect, Current Contents Connect (ISI), Cochrance Library, CINAHL (EBSCO), CrossRef Search and Embase (all from inception to May 2010). Many herbal compounds undergo Phase I and/or Phase II metabolism in vivo, with cytochrome P450s (CYPs) and uridine diphosphate glucuronosyltransferases (UGTs) playing a major role. Some herbal ingredients are substrates of P-glycoprotein (P-gp) which is highly expressed in the intestine, liver, brain and kidney. As such, the activities of these drug metabolizing enzymes and drug transporters are determining factors for the in vivo bioavailability, disposition and distribution of herbal remedies. There are increasing pharmacokinetic studies of herbal remedies, but these studies are mainly focused on a small number of herbal remedies including St John's wort, milk thistle, sculcap, curcumin, echinacea, ginseng, ginkgo, and ginger. The pharmacokinetic data of a small number of purified herbal ingredients, including anthocyanins, berberine, catechins, curcumin, lutein and quercetin, are available. For the majority of herbal remedies used in folk medicines, data on their disposition and biological fate in humans are lacking or in paucity. For a herbal medicine, the pharmacological effect is achieved when the bioactive agents or the metabolites reach and sustain proper levels at their sites of action. Both the dose levels and fates of active components in the body govern their target-site concentrations after administration of an herbal remedy. In this regard, a safe and optimal use of herbal medicines requires a full understanding of their pharmacokinetic profiles. To optimize the use of herbal remedies, further clinical studies to explore their biological fate including the disposition pathways and kinetics in the human body are certainly needed.