496 resultados para Cassava
Resumo:
Cassava brown streak disease (CBSD) was described for the first time in Tanganyika (now Tanzania) about seven decades ago. Tanganyika (now Tanzania) about seven decades ago. It was endemic in the lowland areas of East Africa and inland parts of Malawi and caused by Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae). However, in 1990s CBSD was observed at high altitude areas in Uganda. The causes for spread to new locations were not known.The present work was thus initiated to generate information on genetic variability, clarify the taxonomy of the virus or viruses associated with CBSD in Eastern Africa as well as to understand the evolutionary forces acting on their genes. It also sought to develop a molecular based diagnostic tool for detection of CBSD-associated virus isolates. Comparison of the CP-encoding sequences of CBSD-associated virus isolates collected from Uganda and north-western Tanzania in 2007 and the partial sequences available in Genbank revealed occurrence of two genetically distinct groups of isolates. Two isolates were selected to represent the two groups. The complete genomes of isolates MLB3 (TZ:Mlb3:07) and Kor6 (TZ:Kor6:08) obtained from North-Western (Kagera) and North-Eastern (Tanga) Tanzania, respectively, were sequenced. The genomes were 9069 and 8995 nucleotides (nt), respectively. They translated into polyproteins that were predicted to yield ten mature proteins after cleavage. Nine proteins were typical in the family Potyviridae, namely P1, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP, but the viruses did not contain HC-Pro. Interestingly, genomes of both isolates contained a Maf/HAM1-like sequence (HAM1h; 678 nucleotides, 25 kDa) recombined between the NIb and CP domains in the 3’-proximal part of the genomes. HAM1h was also identified in Euphorbia ringspot virus (EuRSV) whose sequence was in GenBank. The HAM1 gene is widely spread in both prokaryotes and eukaryotes. In yeast (Saccharomyces cerevisiae) it is known to be a nucleoside triphosphate (NTP) pyrophosphatase. Novel information was obtained on the structural variation at the N-termini of polyproteins of viruses in the genus Ipomovirus. Cucumber vein yellowing virus (CVYV) and Squash vein yellowing virus (SqVYV) contain a duplicated P1 (P1a and P1b) but lack the HC-Pro. On the other hand, Sweet potato mild mottle virus (SPMMV), has a single but large P1 and has HC-Pro. Both virus isolates (TZ:Mlb3:07 & TZ:Kor6:08) characterized in this study contained a single P1 and lacked the HC-Pro which indicates unique evolution in the family Potyviridae. Comparison of 12 complete genomes of CBSD-associated viruses which included two genomes characterized in this study, revealed genetic identity of 69.0–70.3% (nt) and amino acid (aa) identities of 73.6–74.4% at polyprotein level. Comparison was also made among 68 complete CP sequences, which indicated 69.0-70.3 and 73.6-74.4 % identity at nt and aa levels, respectively. The genetic variation was large enough for dermacation of CBSD-associated virus isolates into two distinct species. The name CBSV was retained for isolates that were related to CBSV isolates available in database whereas the new virus described for the first time in this study was named Ugandan cassava brown streak virus (UCBSV) by the International Committee on Virus Taxonomy (ICTV). The isolates TZ:Mlb3:07 and TZ:Kor6:08 belong to UCBSV and CBSV, respectively. The isolates of CBSV and UCBSV were 79.3-95.5% and 86.3-99.3 % identitical at nt level, respectively, suggesting more variation amongst CBSV isolates. The main sources of variation in plant viruses are mutations and recombination. Signals for recombination events were detected in 50% of isolates of each virus. Recombination events were detected in coding and non-coding (3’-UTR) sequences except in the 5’UTR and P3. There was no evidence for recombination between isolates of CBSV and UCBSV. The non-synonomous (dN) to synonomous (dS) nucleotide substitution ratio (ω) for the HAM1h and CP domains of both viruses were ≤ 0.184 suggesting that most sites of these proteins were evolving under strong purifying selection. However, there were individual amino acid sites that were submitted to adaptive evolution. For instance, adaptive evolution was detected in the HAM1h of UCBSV (n=15) where 12 aa sites were under positive selection (P< 0.05) but not in CBSV (n=12). The CP of CBSV (n=23) contained 12 aa sites (p<0.01) while only 5 aa sites in the CP gene of UCBSV were predicted to be submitted to positive selection pressure (p<0.01). The advantages offered by the aa sites under positive selection could not be established but occurrence of such sites in the terminal ends of UCBSV-HAMIh, for example, was interpreted as a requirement for proteolysis during polyprotein processing. Two different primer pairs that simultaneously detect UCBSV and CBSV isolates were developed in this study. They were used successfully to study distribution of CBSV, UCBSV and their mixed infections in Tanzania and Uganda. It was established that the two viruses co-infect cassava and that incidences of co-infection could be as high as 50% around Lake Victoria on the Tanzanian side. Furthermore, it was revealed for the first time that both UCBSV and CBSV were widely distributed in Eastern Africa. The primer pair was also used to confirm infection in a close relative of cassava, Manihot glaziovii (Müller Arg.) with CBSV. DNA barcoding of M. glaziovii was done by sequencing the matK gene. Two out of seven M. glaziovii from the coastal areas of Korogwe and Kibaha in north eastern Tanzania were shown to be infected by CBSV but not UCBSV isolates. Detection in M. glaziovii has an implication in control and management of CBSD as it is likely to serve as virus reservoir. This study has contributed to the understanding of evolution of CBSV and UCBSV, which cause CBSD epidemic in Eastern Africa. The detection tools developed in this work will be useful in plant breeding, verification of the phytosanitary status of materials in regional and international movement of germplasm, and in all diagnostic activities related to management of CBSD. Whereas there are still many issues to be resolved such as the function and biological significance of HAM1h and its origin, this work has laid a foundation upon which the studies on these aspects can be based.
Resumo:
This study, though, has as its core objective cost reduction in aquaculture nutrition was equally designed to investigate the value of the peels of cassava (Manihot utillisima) as energy source in the diet of Oreochromis niloticus fry. Three levels of cassava peels diet and a control (100% yellow maize in the carbohydrate mixture) was prepared and tested on O. niloticus fry for ten (10) weeks. The fry with mean weight of 0.32g were grouped fifteen (15) in each of the glass aquaria measuring 60x30x30cm with a maximum capacity of 52 litres of water. The fry were fed twice daily at 10% biomass. Weekly, the fry were weighed to determine the weight increment or otherwise and the quality of feed adjusted accordingly. Water quality parameters like temperature, pH and dissolved oxygen (D.0) were monitored and found to be at desirable level. DT 3 (97 % cassava peels and 3% yellow maize) in the carbohydrate mixture gave the best growth performance. The fry fed, this diet gained mean weight of 1.18g for the period of the experiment. However, the poorest performance in terms of growth was from fry fed the control diet (100%yellow maize in the carbohydrate mixture) fry fed this diet gained mean weight of 0.80 for the duration of the experiment. Analysis of the various growth indices like SGR, PER, FCR and NPU shows that DT3 was the overall best diet with an SGR value of2.40 and FCR of 43.83. However, DT 1 (70% cassava peels and 30% yellow maize) gave the poorest SGR of 1.61 and FCR of 67.58. The difference in weight gain among the fry fed the three levels of cassava peels diet and the control was not statically significant (P>0.05)
Resumo:
No abstract is available for this article.
Resumo:
Cassava (Manihot esculenta) is one of the most important export crops in Thailand, yet the nitrogen requirement is unknown and not considered by growers and producers. Cassava requirements for N were determined in field experiments during a period of four years and four sites on the Satuk (Suk), Don Chedi (Dc), Pak Chong (Pc),and Ban Beung (BBg) soil series in Lopburi, Supanburi, Nakhon Ratchasima, and Chonburi sites, respectively. The fertilizer treatment structure comprised 0, 62.5, 125, 187.5, 250 and 312.5 kg N ha^(-1) as urea. At each site cassava was harvested at nine months and yield parameters and the minimum datasets were taken. The fertilizer rate which resulted in maximum yield ranged from 187.5 kg N ha^(-1) in Supanburi and Chonburi (fresh weight yield of 47,500 and 30,000 kg ha^(-1) respectively) to 250 kg N ha^(-1) in Lopburi and Nakhon Ratchasima (fresh weight yield of 64,100 and 46,700 kg ha^(-1) respectively). Yield appeared to decrease at the higher, 312 kg ha^(-1), at Supanburi and Lopburi, and 250 kg ha^(-1) (Chonburi) fertilizer N rates. Net revenue was 70.4 and 72.9 % higher than where no N was appliedLopburi and Nakhon Ratchasima sites. Net revenue at the Supanburi and Chonburi sites were 53.8 and 211.0 % higher than that where no N was applied. This study suggests that at all sites improved cassava production and net revenue could be obtained with the judicious application of higher quantities of N. The results provide needed guidance to nitrogen fertilization of the important industrial crop cassava in Thailand.
Resumo:
Two experiments were conducted to evaluate cassava root peel (CRP) as diet component for fattening pigs. In the first experiment, ten male pigs were used to investigate the nutrient digestibility and the nutritive value of CRP as replacement for maize in the diet at 0 %, 30 %, 40 %, 50 % and 60 %, while supplementing free amino acids (fAA). During two experimental periods, faeces were quantitatively collected and analysed for chemical composition. In the second experiment, 40 pigs received the same diets as in Experiment 1, and daily feed intake and weekly weight changes were recorded. Four pigs per diet were slaughtered at 70 kg body weight to evaluate carcass traits. Digestibility of dry and organic matter, crude protein, acid detergent fibre and gross energy were depressed (p<0.05) at 60 % CRP; digestible energy content (MJ kg^(−1) DM) was 15.4 at 0 % CRP and 12.7 at 60 % CRP. In the second experiment, CRP inclusion had only a small impact on feed intake, weight gain and feed conversion ratio (p>0.05) as well as on the length of the small intestine and the Longissimus dorsi muscle area. The missing correlation of daily weight gain and feed-to-gain ratio up to a CRP inclusion of 40 % indicates that negative effects of CRP on pig growth can be avoided by respecting upper feeding limits. Hence, a combined use of CRP and fAA can reduce feeding costs for small-scale pig farmers in countries where this crop-by product is available in large amounts.