885 resultados para Case-based reasoning system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El test de circuits és una fase del procés de producció que cada vegada pren més importància quan es desenvolupa un nou producte. Les tècniques de test i diagnosi per a circuits digitals han estat desenvolupades i automatitzades amb èxit, mentre que aquest no és encara el cas dels circuits analògics. D'entre tots els mètodes proposats per diagnosticar circuits analògics els més utilitzats són els diccionaris de falles. En aquesta tesi se'n descriuen alguns, tot analitzant-ne els seus avantatges i inconvenients. Durant aquests últims anys, les tècniques d'Intel·ligència Artificial han esdevingut un dels camps de recerca més importants per a la diagnosi de falles. Aquesta tesi desenvolupa dues d'aquestes tècniques per tal de cobrir algunes de les mancances que presenten els diccionaris de falles. La primera proposta es basa en construir un sistema fuzzy com a eina per identificar. Els resultats obtinguts son força bons, ja que s'aconsegueix localitzar la falla en un elevat tant percent dels casos. Per altra banda, el percentatge d'encerts no és prou bo quan a més a més s'intenta esbrinar la desviació. Com que els diccionaris de falles es poden veure com una aproximació simplificada al Raonament Basat en Casos (CBR), la segona proposta fa una extensió dels diccionaris de falles cap a un sistema CBR. El propòsit no és donar una solució general del problema sinó contribuir amb una nova metodologia. Aquesta consisteix en millorar la diagnosis dels diccionaris de falles mitjançant l'addició i l'adaptació dels nous casos per tal d'esdevenir un sistema de Raonament Basat en Casos. Es descriu l'estructura de la base de casos així com les tasques d'extracció, de reutilització, de revisió i de retenció, fent èmfasi al procés d'aprenentatge. En el transcurs del text s'utilitzen diversos circuits per mostrar exemples dels mètodes de test descrits, però en particular el filtre biquadràtic és l'utilitzat per provar les metodologies plantejades, ja que és un dels benchmarks proposats en el context dels circuits analògics. Les falles considerades son paramètriques, permanents, independents i simples, encara que la metodologia pot ser fàcilment extrapolable per a la diagnosi de falles múltiples i catastròfiques. El mètode es centra en el test dels components passius, encara que també es podria extendre per a falles en els actius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case-based reasoning (CBR) is a recent approach to problem solving and learning that has got a lot of attention over the last years. In this work, the CBR methodology is used to reduce the time and amount of resources spent on carry out experiments to determine the viscosity of the new slurry. The aim of this work is: to develop a CBR system to support the decision making process about the type of slurries behavior, to collect a sufficient volume of qualitative data for case base, and to calculate the viscosity of the Newtonian slurries. Firstly in this paper, the literature review about the types of fluid flow, Newtonian and non-Newtonian slurries is presented. Some physical properties of the suspensions are also considered. The second part of the literature review provides an overview of the case-based reasoning field. Different models and stages of CBR cycles, benefits and disadvantages of this methodology are considered subsequently. Brief review of the CBS tools is also given in this work. Finally, some results of work and opportunities for system modernization are presented. To develop a decision support system for slurry viscosity determination, software application MS Office Excel was used. Designed system consists of three parts: workspace, the case base, and section for calculating the viscosity of Newtonian slurries. First and second sections are supposed to work with Newtonian and Bingham fluids. In the last section, apparent viscosity can be calculated for Newtonian slurries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La comunitat científica que treballa en Intel·ligència Artificial (IA) ha dut a terme una gran quantitat de treball en com la IA pot ajudar a les persones a trobar el que volen dins d'Internet. La idea dels sistemes recomanadors ha estat extensament acceptada pels usuaris. La tasca principal d'un sistema recomanador és localitzar ítems, fonts d'informació i persones relacionades amb els interessos i preferències d'una persona o d'un grup de persones. Això comporta la construcció de models d'usuari i l'habilitat d'anticipar i predir les preferències de l'usuari. Aquesta tesi està focalitzada en l'estudi de tècniques d'IA que millorin el rendiment dels sistemes recomanadors. Inicialment, s'ha dut a terme un anàlisis detallat de l'actual estat de l'art en aquest camp. Aquest treball ha estat organitzat en forma de taxonomia on els sistemes recomanadors existents a Internet es classifiquen en 8 dimensions generals. Aquesta taxonomia ens aporta una base de coneixement indispensable pel disseny de la nostra proposta. El raonament basat en casos (CBR) és un paradigma per aprendre i raonar a partir de la experiència adequat per sistemes recomanadors degut als seus fonaments en el raonament humà. Aquesta tesi planteja una nova proposta de CBR aplicat al camp de la recomanació i un mecanisme d'oblit per perfils basats en casos que controla la rellevància i edat de les experiències passades. Els resultats experimentals demostren que aquesta proposta adapta millor els perfils als usuaris i soluciona el problema de la utilitat que pateixen el sistemes basats en CBR. Els sistemes recomanadors milloren espectacularment la qualitat dels resultats quan informació sobre els altres usuaris és utilitzada quan es recomana a un usuari concret. Aquesta tesi proposa l'agentificació dels sistemes recomanadors per tal de treure profit de propietats interessants dels agents com ara la proactivitat, la encapsulació o l'habilitat social. La col·laboració entre agents es realitza a partir del mètode de filtratge basat en la opinió i del mètode col·laboratiu de filtratge a partir de confiança. Els dos mètodes es basen en un model social de confiança que fa que els agents siguin menys vulnerables als altres quan col·laboren. Els resultats experimentals demostren que els agents recomanadors col·laboratius proposats milloren el rendiment del sistema mentre que preserven la privacitat de les dades personals de l'usuari. Finalment, aquesta tesi també proposa un procediment per avaluar sistemes recomanadors que permet la discussió científica dels resultats. Aquesta proposta simula el comportament dels usuaris al llarg del temps basat en perfils d'usuari reals. Esperem que aquesta metodologia d'avaluació contribueixi al progrés d'aquesta àrea de recerca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petroleum well drilling is an expensive and risky operation. In this context, well design presents itself as a fundamental key to decrease costs and risks involved. Experience acquired by engineers is notably an important factor in good drilling design elaborations. Therefore, the loss of this knowledge may entail additional problems and costs. In this way, this work represents an initiative to model a petroleum well design case-based architecture. Tests with a prototype showed that the system built with this architecture may help in a well design and enable corporate knowledge preservation. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper deals with a problem of intelligent system’s design for complex environments. There is discussed a possibility to integrate several technologies into one basic structure that could form a kernel of an autonomous intelligent robotic system. One alternative structure is proposed in order to form a basis of an intelligent system that would be able to operate in complex environments. The proposed structure is very flexible because of features that allow adapting via learning and adjustment of the used knowledge. Therefore, the proposed structure may be used in environments with stochastic features such as hardly predictable events or elements. The basic elements of the proposed structure have found their implementation in software system and experimental robotic system. The software system as well as the robotic system has been used for experimentation in order to validate the proposed structure - its functionality, flexibility and reliability. Both of them are presented in the paper. The basic features of each system are presented as well. The most important results of experiments are outlined and discussed at the end of the paper. Some possible directions of further research are also sketched at the end of the paper.