998 resultados para Cascade Reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A catalytic enantioselective sulfa-Michael/Horner-Wadsworth-Emmons reaction cascade has been developed, taking advantage of phosphonate as an electrophilic activator and a traceless binding site. Using a chiral bifunctional urea derivative as the catalyst, a variety of aryl and heteroaryl substituted thiochromenes was obtained in excellent yield with a high level of enantioselectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first organocatalytic asymmetric reaction of 3-isothiocyanatooxindoles with nitro olefins has been developed by using a cinchonidine-derived bifunctional catalyst. The resulting products, highly functionalized 3,2-pyrrolidinyl-substituted spirooxindole derivatives, were obtained in high yields with good diastereo- and enantioselectivities (up to dr >20:1 and er = 96:4). This Michael addition/cyclization cascade reaction employs monosubstituted nitro olefins and complements the Zn-II-catalyzed variant, which is only applicable to disubstituted nitro olefins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stereoselective construction of complex molecules with multiple stereogenicity in a single step represents an extremely useful, but challenging approach to complexity in chemical synthesis. The development of organocatalytic cascade processes has proven useful in these studies, but reports where four or more stereocentres are created in a single step from just two achiral reagents are rare. Herein we report the development of a novel asymmetric domino Michael-Michael reaction between nitrohex-4-enoates and nitro-olefins to generate cyclohexanes of high complexity, including one with a quaternary centre, and one with five contiguous stereocentres. This methodology provides access to a range of useful nitrocyclohexane derivatives, including a novel class of a-lycorane-like structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chalcogenolate mediated Michael-aldol cascade reactions consists of a very efficient route to multi-functionalized gamma-hydroxichalcogenides. Although, when selenolates are employed, these gamma-hydroxichalcogenides can be readily converted into the corresponding Morita-Baylis-Hillman adducts by oxidative elimination of the selenium moiety. In this context, herein we present a complete study on the scope and limitations of this reaction. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium hydride-mediated cascade reaction towards the synthesis of 1,5-disubstituted uracil from cyanamides derived from the Baylis-Hillman ad-ducts

Relevância:

70.00% 70.00%

Publicador:

Resumo:

302 p. : gráf.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans ce mémoire, je présente mes études sur une stratégie efficace développée pour la synthèse de cétones homoallyliques substituées à partir de l’addition en cascade de réactifs de Grignard vinyliques substitués sur des α-amino esters catalysée par des sels de cuivre. L’utilisation de ces cétones homoallyliques a permis d’obtenir des mimes peptidiques comprenant un isostère de type hydroxyéthylène du lien amide. L’étape clé de cette stratégie repose sur la synthèse de cétones homoallyliques substituées intermédiaires à partir de la réaction d’additions en cascade catalysée au cuivre, de bromure de β,β-diméthylevinyle magnésium sur des analogues d’esters de la phénylalanine et de la sérine. Les cétones homoallyliques résultantes sont réduites sélectivement en alcool, la liaison double est clivée oxydativement et l’acide carboxylique résultant est couplé à un acide aminé. Afin d’évaluer l’effet qu’ont le remplacement du lien amide central dans un coude β par un hydroxyéthylène et de la présence d’un gem diméthyle sur la chaîne carbonée sur la conformation tridimensionnelle adoptée par les tripeptides générés, des analyses à l’état solide par diffraction aux rayons X, des analyses en solution par la spectroscopie RMN et des expériences de type NOESY ont été réalisées. Ces études ont permis de définir un nouveau type de coude β. La présence de pont hydrogène intramoléculaire et l’effet de restriction de conformation induit par le gem diméthyle, généralement appelé effet Thorpe-Ingold, favorisent la formation d’un coude β.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The studies conducted during my Phd thesis were focused on two different directions: 1. In one case we tried to face some long standing problems of the asymmetric aminocatalysis as the activation of encumbered carbonyl compounds and the control of the diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one. In this section (Challenges) was described the asymmetric aziridination of ,-unsaturated ketones, the activation of ,-unsaturated -branched aldehydes and the Michael addition of oxindoles to enals and enones. For the activation via iminium ion formation of sterically demanding substrates, as ,-unsaturated ketones and ,-unsaturated -branched aldehydes, we exploited a chiral primary amine in order to overcome the problem of the iminium ion formation between the catalyst and encumbered carbonylic componds. For the control of diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one we envisaged that a suitable strategy was the Michael addition to 3 substituted oxindoles to enals activated via LUMO-lowering catalysis. In this synthetic protocol we designed a new bifunctional catalyst with an amine moiety for activate the aldehyde and a tioureidic fragment for direct the approach of the oxindole. This part of the thesis (Challenges) could be considered pure basic research, where the solution of the synthetic problem was the goal itself of the research. 2. In the other hand (Molecules) we applied our knowledge about the carbonylic compounds activation and about cascade reaction to the synthesis of three new classes of spirooxindole in enantiopure form. The construction of libraries of these bioactive compounds represented a scientific bridge between medicinal chemistry or biology and the asymmetric catalysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we presented several aspects regarding the possibility to use readily available propargylic alcohols as acyclic precursors to develop new stereoselective [Au(I)]-catalyzed cascade reactions for the synthesis of highly complex indole architectures. The use of indole-based propargylic alcohols of type 1 in a stereoselective [Au(I)]-catalyzed hydroindolynation/immiun trapping reactive sequence opened access to a new class of tetracyclic indolines, dihydropyranylindolines A and furoindolines B. An enantioselective protocol was futher explored in order to synthesize this molecules with high yields and ee. The suitability of propargylic alcohols in [Au(I)]-catalyzed cascade reactions was deeply investigated by developing cascade reactions in which was possible not only to synthesize the indole core but also to achieve a second functionalization. Aniline based propargylic alcohols 2 were found to be modular acyclic precursors for the synthesis of [1,2-a] azepinoindoles C. In describing this reactivity we additionally reported experimental evidences for an unprecedented NHCAu(I)-vinyl specie which in a chemoselective fashion, led to the annulation step, synthesizing the N1-C2-connected seven membered ring. The chemical flexibility of propargylic alcohols was further explored by changing the nature of the chemical surrounding with different preinstalled N-alkyl moiety in propargylic alcohols of type 3. Particularly, in the case of a primary alcohol, [Au(I)] catalysis was found to be prominent in the synthesis of a new class of [4,3-a]-oxazinoindoles D while the use of an allylic alcohol led to the first example of [Au(I)] catalyzed synthesis and enantioselective functionalization of this class of molecules (D*). With this work we established propargylic alcohols as excellent acyclic precursor to developed new [Au(I)]-catalyzed cascade reaction and providing new catalytic synthetic tools for the stereoselective synthesis of complex indole/indoline architectures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pennicillipyrone A and B are two novel meroterpenoids isolated from the marine-derived fungus Penicilliump sp. Although a preliminary toxicity studies demonstrated the bioactivity of penicillipyrone A to be far superior to that of its congener penicillipyrone B, we were intrigued by its structure. Moreover, it appeared as though one could design an efficient total synthesis based on chemistry that was familiar to our laboratory. The purpose of this project was the study of a new synthesis of Pennicillipyrone B by way of a doubley-biomimetic approach. The intended approach proceeds through a polyene cascade reaction terminated by a nucleophilic pyrone - a reaction not yet known in the literature for the construction of this type of scaffold. During the course of this study we have learned about the unanticipated reactivity of C2 substituted keto-dioxinones with regard to self-condensation. In addition, four new compounds were synthesized and two synthetic routes to the target molecule are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hybrid structure of a synthetic dendronized polymer, two different types of enzymes (superoxide dismutase and horseradish peroxidase), and a fluorescent dye (fluorescein) was synthesized. Thereby, a single polymer chain carried multiple copies of the two enzymes and the fluorescein. The entire attachment chemistry is based on UV/vis-quantifiable bis-aryl hydrazone bond formation that allows direct quantification of bound molecules: 60 superoxide dismutase, 120 horseradish peroxidase, and 20 fluorescein molecules on an average polymer chain of 2000 repeating units. To obtain other enzyme ratios the experimental conditions were altered accordingly. Moreover, it could be shown that both enzymes remained fully active and catalyzed a two-step cascade reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

4-Aryl-1,1,1-trifluorobut-3-en-2-ones ArCH[double bond, length as m-dash]CHCOCF3 (CF3-enones) react with arenes in excess of Brønsted superacids (TfOH, FSO3H) to give, stereoselectively, trans-1,3-diaryl-1-trifluoromethyl indanes in 35-85% yields. The reaction intermediates, the O-protonated ArCH[double bond, length as m-dash]CHC(OH(+))CF3 and the O,C-diprotonated ArHC(+)CH2C(OH(+))CF3 species, have been studied by means of (1)H, (13)C, (19)F NMR, and DFT calculations. Both types of the cations may participate in the reaction, depending on their electrophilicity and electron-donating properties of the arenes. The formation of CF3-indanes is a result of cascade reaction of protonated CF3-enones to form chemo-, regio- and stereoselectively three new C-C bonds. The obtained trans-1,3-diaryl-1-trifluoromethyl indanes were investigated as potential ligands for cannabinoid receptors CB1 and CB2 types. The most potent compound showed sub-micromolar affinity for both receptor subtypes with a 6-fold selectivity toward the CB2 receptor with no appreciable cytotoxicity toward SHSY5Y cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Title of Document: Diversity in Catalytic Reactions of Propargylic Diazoesters Huang Qiu, Doctor of Philosophy, 2016 Directed By: Professor Michael P. Doyle, Department of Chemistry and Biochemistry Propargylic aryldiazoesters, which possess multiple reactive functional groups in a single molecule, were expected to undergo divergent reaction pathways as a function of catalysts. A variety of transition metal complexes including rhodium(II), palladium(II), silver(I), mercury(II), copper(I and II), and cationic gold (I) complexes have been examined to be effective in the catalytic domino reactions of propargylic aryldiazoesters. An unexpected Lewis acid catalyzed pathway was also discovered by using FeCl3 as the catalyst. Under the catalysis of selected gold catalysts, propargylic aryldiazoesters exist in equilibrium with 1-aryl-1,2-dien-1-yl diazoacetate allenes that are rapidly formed at room temperature through 1,3-acyloxy migration. The newly formed allenes further undergo a metal-free rearrangement in which the terminal nitrogen of the diazo functional group adds to the central carbon of the allene initiating a sequence of bond forming reactions resulting in the production of 1,5-dihydro-4H-pyrazol-4-ones in good yields. These 1,5-dihydro-4H-pyrazol-4-ones undergo intramolecular 1,3-acyl migration to form an equilibrium mixture or quantitatively transfer the acyl group to an external nucleophile with formation of 4-hydroxypyrazoles. In the presence of a pyridine-N-oxide, both E- and Z-1,3-dienyl aryldiazoacetates are formed in high combined yields by Au(I)-catalyzed rearrangement of propargyl arylyldiazoacetates at short reaction times. Under thermal reactions the E-isomers form the products from intramolecular [4+2]-cycloaddition with H‡298 = 15.6 kcal/mol and S‡298= -27.3 cal/ (mol•degree). The Z-isomer is inert to [4+2]-cycloaddition under these conditions. The Hammett relationships from aryl-substituted diazo esters ( = +0.89) and aryl-substituted dienes ( = -1.65) are consistent with the dipolar nature of this transformation. An unexpected reaction for the synthesis of seven-membered conjugated 1,4-diketones from propargylic diazoesters with unsaturated imines was disclosed. To undergo this process vinyl gold carbene intermediates generated by 1,2-acyloxy migration of propargylic aryldiazoesters undergo a formal [4+3]-cycloaddition, and the resulting aryldiazoesters tethered dihydroazepines undergo an intricate metal-free process to form observed seven-membered conjugated 1,4-diketones with moderate to high yields.