906 resultados para Cartilage tissue engineering


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but they have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in gel-MA based hydrogels, and show that with the incorporation of small quantities of photo-crosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesised ECM throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 96 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoarthritis is the most common cause of pain and disability in Australia. This project describes a method where hundreds of cartilage microtissues are generated as tiny building blocks for assembly into larger tissues suitable for cartilage defect repair. Tissue engineering applications has the potential to overcome natural barriers and effectively repair damaged cartilage tissue. However, engineering few-millimeter thick cartilage, similar to human cartilage in the knee, remains a challenge. Utilizing micropellets as building blocks has the potential to overcome some of the challenges in cartilage tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular cartilage is a highly organized tissue with cellular and matrix properties that vary with depth zones. Regenerating this zonal organization has proven difficult in tissue-engineered cartilage to treat damaged cartilage. In this thesis, we evaluated the effects of culture environments that mimic aspects of the native cartilage environment on chondrocyte subpopulations. We found that decellularized cartilage matrix can improve zonal tissue-engineered cartilage. Also, chondrocytes respond to signals from bone cells and compressive stimulation in a zone-dependent manner. These results highlight the importance of a zone-specific environment to improve tissue-engineered cartilage in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (mu(eq) approximately 0.1-0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL-fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n=5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1×105) were than encapsulated inside 60μl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI. © 2013 Informa UK Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibrous materials have morphological similarities to natural cartilage extracellular matrix and have been considered as candidate for bone tissue engineering scaffolds. In this study, we have evaluated a novel electrospun chitosan mat composed of oriented sub-micron fibers for its tensile property and biocompatibility with chondrocytes (cell attachment, proliferation and viability). Scanning electronic microscope images showed the fibers in the electrospun chitosan mats were indeed aligned and there was a slight cross-linking between the parent fibers. The electrospun mats have significantly higher elastic modulus (2.25 MPa) than the cast films (1.19 MPa). Viability of cells on the electrospun mat was 69% of the cells on tissue-culture polystyrene (TCP control) after three days in culture, which was slightly higher than that on the cast films (63% of the TCP control). Cells on the electrospun mat grew slowly the first week but the growth rate increased after that. By day 10, cell number on the electrospun mat was almost 82% that of TCP control, which was higher than that of cast films (56% of TCP). The electrospun chitosan mats have a higher Young’s modulus (P <0.01) than cast films and provide good chondrocyte biocompatibility. The electrospun chitosan mats, thus, have the potential to be further processed into three-dimensional scaffolds for cartilage tissue repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular cartilage injuries and degeneration affect a large proportion of the population in developed countries world wide. Stem cells can be differentiated into chondrocytes by adding transforming growth factor-beta1 and dexamethasone to a pellet culture, which are unfeasible for tissue engineering purposes. We attempted to achieve stable chondrogenesis without any requirement for exogenous growth factors. Human mesenchymal stem cells were transduced with an adenoviral vector containing the SRY-related HMG-box gene 9 (SOX9), and were cultured in a three-dimensional (3D) hydrogel scaffold composite. As an additional treatment, mechanical stimulation was applied in a custom-made bioreactor. SOX9 increased the expression level of its known target genes, as well as its cofactors: the long form of SOX5 and SOX6. However, it was unable to increase the synthesis of sulfated glycosaminoglycans (GAGs). Mechanical stimulation slightly enhanced collagen type X and increased lubricin expression. The combination of SOX9 and mechanical load boosted GAG synthesis as shown by (35)S incorporation. GAG production rate corresponded well with the amount of (endogenous) transforming growth factor-beta1. Finally, cartilage oligomeric matrix protein expression was increased by both treatments. These findings provide insight into the mechanotransduction of mesenchymal stem cells and demonstrate the potential of a transcription factor in stem cell therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pain in the joint is often due to cartilage degeneration and represents a serious medical problem affecting people of all ages. Although many, mostly surgical techniques, are currently employed to treat cartilage lesions, none has given satisfactory results in the long term. Recent advances in biology and material science have brought tissue engineering to the forefront of new cartilage repair techniques. The combination of autologous cells, specifically designed scaffolds, bioreactors, mechanical stimulations and growth factors together with the knowledge that underlies the principles of cell biology offers promising avenues for cartilage tissue regeneration. The present review explores basic biology mechanisms for cartilage reconstruction and summarizes the advances in the tissue engineering approaches. Furthermore, the limits of the new methods and their potential application in the osteoarthritic conditions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigated whether expanded goat chondrocytes have the capacity to generate cartilaginous tissues with biochemical and biomechanical properties improving with time in culture. Goat chondrocytes were expanded in monolayer with or without combinations of FGF-2, TGF-beta1, and PDGFbb, and the postexpansion chondrogenic capacity assessed in pellet cultures. Expanded chondrocytes were also cultured for up to 6 weeks in HYAFF-M nonwoven meshes or Polyactive foams, and the resulting cartilaginous tissues were assessed histologically, biochemically, and biomechanically. Supplementation of the expansion medium with FGF-2 increased the proliferation rate of goat chondrocytes and enhanced their postexpansion chondrogenic capacity. FGF-2-expanded chondrocytes seeded in HYAFF-M or Polyactive scaffolds formed cartilaginous tissues with wet weight, glycosaminoglycan, and collagen content, increasing from 2 days to 6 weeks culture (up to respectively 2-, 8-, and 41-fold). Equilibrium and dynamic stiffness measured in HYAFF M-based constructs also increased with time, up to, respectively, 1.3- and 16-fold. This study demonstrates the feasibility to engineer goat cartilaginous tissues at different stages of development by varying culture time, and thus opens the possibility to test the effect of maturation stage of engineered cartilage on the outcome of cartilage repair in orthotopic goat models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteochondral tissue repair requires formation of vascularized bone and avascular cartilage. Mesenchymal stem cells stimulate angiogenesis both in vitro and in vivo but it is not known if these proangiogenic properties change as a result of chondrogenic or osteogenic differentiation. We investigated the angiogenic/antiangiogenic properties of equine bone marrow-derived mesenchymal stem cells (eBMSCs) before and after differentiation in vitro. Conditioned media from chondrogenic and osteogenic cell pellets and undifferentiated cells was applied to endothelial tube formation assays using Matrigel™. Additionally, the cell secretome was analysed using LC-MS/MS mass spectrometry and screened for angiogenesis and neurogenesis-related factors using protein arrays. Endothelial tube-like formation was supported by conditioned media from undifferentiated eBMSCs. Conversely, chondrogenic and osteogenic conditioned media was antiangiogenic as shown by significantly decreased length of endothelial tube-like structures and degree of branching compared to controls. Undifferentiated cells produced higher levels of angiogenesis-related proteins compared to chondrogenic and osteogenic pellets. In summary, eBMSCs produce an array of angiogenesis-related proteins and support angiogenesis in vitro via a paracrine mechanism. However, when these cells are differentiated chondrogenically or osteogenically, they produce a soluble factor(s) that inhibits angiogenesis. With respect to osteochondral tissue engineering, this may be beneficial for avascular articular cartilage formation but unfavourable for bone formation where a vascularized tissue is desired. © Copyright 2014, Mary Ann Liebert, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biocompatibility of chitosan and its similarity with glycosaminoglycans make it attractive for cartilage engineering despite its limited cell adhesion properties. Structural and chemical characteristics of chitosan scaffolds may be improved for cartilage engineering application. We planned to evaluate chitosan meshes produced by a novel technique and the effect of chitosan structure on mesenchymal stem cells (MSCs) chondrogenesis. Another objective was to improve cell adhesion and chondrogenesis on chitosan by modifying the chemical composition of the scaffold (reacetylation, collagen II, or hyaluronic acid (HA) coating). A replica molding technique was developed to produce chitosan meshes of different fiber-width. A polyglycolic acid (PGA) mesh served as a reference. Constructs were analyzed at two and 21 days after seeding chondrocytes with confocal microscopy, scanning electron microscopy, histology, and quantitative analysis (weights, DNA, glycosaminoglycans, collagen II). Chondrocytes maintained their phenotypic appearance and a high viability but attached preferentially to PGA. Matrix production per chondrocyte was superior on chitosan. Chitosan meshes and sponges were analyzed after seeding and culture of MSCs under chondrogenic condition for 21 days. The cellularity was similar between groups but matrix production was greater on meshes. Chitosan and reacetylated-chitosan scaffolds were coated with collagen II or HA. Scaffolds were characterized prior to seeding MSCs. Chitosan meshes were then coated with collagen at two densities. PGA served as a reference. Constructs were evaluated after seeding or culture of MSCs for 21 days in chondrogenic medium. MSCs adhered less to reacetylated-chitosan despite collagen coating. HA did not affect cell adhesion. The cell attachment on chitosan correlated with collagen density. The cell number and matrix production were improved after culture in collagen coated meshes. The differences between PGA and chitosan are likely to result from the chemical composition. Chondrogenesis is superior on chitosan meshes compared to sponges. Collagen II coating is an efficient way to overcome poor cell adhesion on chitosan. These findings encourage the use of chitosan meshes coated with collagen II and confirm the importance of biomimetic scaffolds for tissue engineering. The decreased cell adhesion on reacetylated chitosan and the poor mechanical stability of PGA limit their use for tissue engineering.