891 resultados para Cardiac rhythms


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An Automated Interpulse Duration Assessment system (AIDA) is described which permits detection of irregularities in cardiac rhythms in selected invertebrates. The sensitivity of AIDA was demonstrated by its ability to detect handling stress in mussels (Mytilus edulis) that was not evident when measuring heart rate alone. Changes in cardiac activity patterns of crabs (Carcinus maenas) held in the laboratory for up to 10 wk was also examined using the new technique. The frequency distribution of interpulse duration changed significantly as the nutritional state changed. Potential applications of the AIDA system are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the authors study the structure of a novel binaural sound with a certain phase and amplitude modulation and the response to this excitation when it is applied to natural rewarding circuit of human brain through auditory neural pathways. This novel excitation, also referred to as gyrosonic excitation in this work, has been found to have interesting effects such as stabilization effects on the left and right hemispheric brain signaling as captured by Galvanic Skin Resistance (GSR) measurements, control of cardiac rhythms (observed from ECG signals), mitigation of psychosomatic syndrome, and mitigation of migraine pain. Experimental data collected from human subjects are presented, and these data are examined to categorize the extent of systems disorder and reinforcement reward due to the gyrosonic stimulus. A multi-path reduced-order model has been developed to analyze the GSR signals. The filtered results are indicative of complicated reinforcing reward patterns due to the gyrosonic stimulation when it is used as a control input for patients with psychosomatic and cardiac disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doxorubicin is effective against breast cancer, but its major side effect is cardiotoxicity. The aim of this study was to determine whether the efficacy of doxorubicin on cancer cells could be increased in combination with PPARγ agonists or chrono-optimization by exploiting the diurnal cycle. We determined cell toxicity using MCF-7 cancer cells, neonatal rat cardiac myocytes and fibroblasts in this study. Doxorubicin damages the contractile filaments of cardiac myocytes and affects cardiac fibroblasts by significantly inhibiting collagen production and proliferation at the level of the cell cycle. Cyclin D1 protein levels decreased significantly following doxorubicin treatment indicative of a G1 /S arrest. PPARγ agonists with doxorubicin increased the toxicity to MCF-7 cancer cells without affecting cardiac cells. Rosiglitazone and ciglitazone both enhanced anti-cancer activity when combined with doxorubicin (e.g. 50% cell death for doxorubicin at 0.1 μM compared to 80% cell death when combined with rosiglitazone). Thus, the therapeutic dose of doxorubicin could be reduced by 20-fold through combination with the PPARγ agonists, thereby reducing adverse effects on the heart. The presence of melatonin also significantly increased doxorubicin toxicity, in cardiac fibroblasts (1 μM melatonin) but not in MCF-7 cells. Our data show, for the first time, that circadian rhythms play an important role in doxorubicin toxicity in the myocardium; doxorubicin should be administered mid-morning, when circulating levels of melatonin are low, and in combination with rosiglitazone to increase therapeutic efficacy in cancer cells while reducing the toxic effects on the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The accurate measurement of Cardiac output (CO) is vital in guiding the treatment of critically ill patients. Invasive or minimally invasive measurement of CO is not without inherent risks to the patient. Skilled Intensive Care Unit (ICU) nursing staff are in an ideal position to assess changes in CO following therapeutic measures. The USCOM (Ultrasonic Cardiac Output Monitor) device is a non-invasive CO monitor whose clinical utility and ease of use requires testing. Objectives To compare cardiac output measurement using a non-invasive ultrasonic device (USCOM) operated by a non-echocardiograhically trained ICU Registered Nurse (RN), with the conventional pulmonary artery catheter (PAC) using both thermodilution and Fick methods. Design Prospective observational study. Setting and participants Between April 2006 and March 2007, we evaluated 30 spontaneously breathing patients requiring PAC for assessment of heart failure and/or pulmonary hypertension at a tertiary level cardiothoracic hospital. Methods SCOM CO was compared with thermodilution measurements via PAC and CO estimated using a modified Fick equation. This catheter was inserted by a medical officer, and all USCOM measurements by a senior ICU nurse. Mean values, bias and precision, and mean percentage difference between measures were determined to compare methods. The Intra-Class Correlation statistic was also used to assess agreement. The USCOM time to measure was recorded to assess the learning curve for USCOM use performed by an ICU RN and a line of best fit demonstrated to describe the operator learning curve. Results In 24 of 30 (80%) patients studied, CO measures were obtained. In 6 of 30 (20%) patients, an adequate USCOM signal was not achieved. The mean difference (±standard deviation) between USCOM and PAC, USCOM and Fick, and Fick and PAC CO were small, −0.34 ± 0.52 L/min, −0.33 ± 0.90 L/min and −0.25 ± 0.63 L/min respectively across a range of outputs from 2.6 L/min to 7.2 L/min. The percent limits of agreement (LOA) for all measures were −34.6% to 17.8% for USCOM and PAC, −49.8% to 34.1% for USCOM and Fick and −36.4% to 23.7% for PAC and Fick. Signal acquisition time reduced on average by 0.6 min per measure to less than 10 min at the end of the study. Conclusions In 80% of our cohort, USCOM, PAC and Fick measures of CO all showed clinically acceptable agreement and the learning curve for operation of the non-invasive USCOM device by an ICU RN was found to be satisfactorily short. Further work is required in patients receiving positive pressure ventilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The current study was conducted to determine levels of cardiac knowledge and cardiopulmonary resuscitation (CPR) training in older people in Queensland, Australia.---------- Methods: A telephone survey of 4490 Queensland adults examined respondents’ knowledge of coronary heart disease (CHD) risk factors, knowledge of heart attack symptoms, knowledge of the local emergency telephone number, as well as respondents’ rates and recency of training in CPR.---------- Results: Older participants, aged 60 years and over, were approximately one and a half times more likely than the 30–39 year-old reference group to have limited knowledge of heart disease risk factors (OR = 1.53), and low knowledge of heart attack symptoms (OR = 1.60). Knowledge of the local emergency telephone number also decreased with age. Older participants had significantly lower rates of training in CPR, with almost three quarters (71.7%) reporting that they had never been trained. Older people who had completed CPR training were significantly less likely to have done so recently.---------- Conclusions: Cardiac knowledge levels and CPR training rates in older Queensland persons were lower than those found in the younger population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Although we know much about the molecular makeup of the sinus node (SN) in small mammals, little is known about it in humans. The aims of the present study were to investigate the expression of ion channels in the human SN and to use the data to predict electrical activity. METHODS AND RESULTS: Quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence were used to analyze 6 human tissue samples. Messenger RNA (mRNA) for 120 ion channels (and some related proteins) was measured in the SN, a novel paranodal area, and the right atrium (RA). The results showed, for example, that in the SN compared with the RA, there was a lower expression of Na(v)1.5, K(v)4.3, K(v)1.5, ERG, K(ir)2.1, K(ir)6.2, RyR2, SERCA2a, Cx40, and Cx43 mRNAs but a higher expression of Ca(v)1.3, Ca(v)3.1, HCN1, and HCN4 mRNAs. The expression pattern of many ion channels in the paranodal area was intermediate between that of the SN and RA; however, compared with the SN and RA, the paranodal area showed greater expression of K(v)4.2, K(ir)6.1, TASK1, SK2, and MiRP2. Expression of ion channel proteins was in agreement with expression of the corresponding mRNAs. The levels of mRNA in the SN, as a percentage of those in the RA, were used to estimate conductances of key ionic currents as a percentage of those in a mathematical model of human atrial action potential. The resulting SN model successfully produced pacemaking. CONCLUSIONS: Ion channels show a complex and heterogeneous pattern of expression in the SN, paranodal area, and RA in humans, and the expression pattern is appropriate to explain pacemaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart, by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are nonlinear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of nonlinear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and seven classes of arrhythmia. We present some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. We also extracted features from the HOS and performed an analysis of variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study objective was to determine whether the ‘cardiac decompensation score’ could identify cardiac decompensation in a patient with existing cardiac compromise managed with intraaortic balloon counterpulsation (IABP). A one-group, posttest-only design was utilised to collect observations in 2003 from IABP recipients treated in the intensive care unit of a 450 bed Australian, government funded, public, cardiothoracic, tertiary referral hospital. Twenty-three consecutive IABP recipients were enrolled, four of whom died in ICU (17.4%). All non-survivors exhibited primarily rising scores over the observation period (p < 0.001) and had final scores of 25 or higher. In contrast, the maximum score obtained by a survivor at any time was 15. Regardless of survival, scores for the 23 participants were generally decreasing immediately following therapy escalation (p = 0.016). Further reflecting these changes in patient support, there was also a trend for scores to move from rising to falling at such treatment escalations (p = 0.024). This pilot study indicates the ‘cardiac decompensation score’ to accurately represent changes in heart function specific to an individual patient. Use of the score in conjunction with IABP may lead to earlier identification of changes occurring in a patient's cardiac function and thus facilitate improved IABP outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.