1000 resultados para Carbon Nanotips


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips (NCNTPs) have been synthesized using customized plasma-enhanced hot filament chemical vapor deposition. The morphological, structural, and photoluminescent properties of the NCNTPs are investigated using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The photoluminescence measurements show that the NCNTPs predominantly emit a green band at room temperature while strong blue emission is generated at 77 K. It is shown that these very different emission behaviors are related to the change of the optical band-gap and the concentration of the paramagnetic defects of the carbon nanotips. The studies shed light on the controversies on the photoluminescence mechanisms of carbon-based amorphous films measured at different temperatures. The relevance of the results to the use of nitrogenated carbon nanotips in light-emitting optoelectronic devices is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips (NCNTPs) are synthesized by plasma-enhanced hot filament chemical vapor deposition from the hydrogen, methane, and nitrogen gas mixtures with different flow rate ratios of hydrogen to nitrogen. The morphological, structural, compositional, and electron field emission (EFE) properties of the NCNTPs were investigated by field emissionscanning electron microscopy, Raman spectroscopy, x ray photoelectron spectroscopy, and EFE high-vacuum system. It is shown that the NCNTPs deposited at an intermediate flow rate ratio of hydrogen to nitrogen feature the best size/shape and pattern uniformity, the highest nanotip density, the highest nitrogen concentration, as well as the best electron field emission performance. Several factors that come into play along with the nitrogen incorporation, such as the combined effect of the plasma sputtering and etching, the transition of sp 3carbon clusters to sp 2carbon clusters, the increase of the size of the sp 2 clusters, as well as the reduction of the work function, have been examined to interpret these experimental findings. Our results are highly relevant to the development of the next generation electron field emitters, flat panel displays, atomic force microscope probes, and several other advanced applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron field emission (EFE) properties of nitrogenated carbon nanotips (NCNTPs) were studied under high-vacuum conditions. The NCNTPs were prepared in a plasma-assisted hot filament chemical vapor deposition system using CH4 and N2 as the carbon and nitrogen sources, respectively. The work functions of NCNTPs were measured using x-ray photoelectron spectroscopy. The morphological and structural properties of NCNTPs were studied by field emission scanning electron microscopy, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. The field enhancement factors of NCNTPs were calculated using relevant EFE models based on the Fowler-Nordheim approximation. Analytical characterization and modeling results were used to establish the relations between the EFE properties of NCNTPs and their morphology, structure, and composition. It is shown that the EFE properties of NCNTPs can be enhanced by the reduction of oxygen termination on the surface as well as by increasing the ratio of the NCNTP height to the radius of curvature at its top. These results also suggest that a significant amount of electrons is emitted from other surface areas besides the NCNTP tops, contrary to the common belief. The outcomes of this study advance our knowledge on the electron emission properties of carbonnanomaterials and contribute to the development of the next-generation of advanced applications in the fields of micro- and opto-electronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotips with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition and plasma-enhanced chemical vapor deposition using different deposition conditions, and they were investigated by scanning electron microscopy and Raman spectroscopy. The results indicate that the photoluminescence background of the Raman spectra is different for different carbon nanotips. Additionally, the Raman spectra of the carbon nanotips synthesized using nitrogen-containing gas precursors show a peak located at about 2120 cm-1 besides the common D and G peaks. The observed difference in the photoluminescence background is related to the growth mechanisms, structural properties, and surface morphology of a-C:H and a-C:H:N nanotips, in particular, the sizes of the emissive tips.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three-dimensional topography of microscopic ion fluxes in the reactive hydrocarbon-based plasma-aided nanofabrication of ordered arrays of vertically aligned single-crystalline carbon nanotip microemitter structures is simulated by using a Monte Carlo technique. The individual ion trajectories are computed by integrating the ion equations of motion in the electrostatic field created by a biased nanostructured substrate. It is shown that the ion flux focusing onto carbon nanotips is more efficient under the conditions of low potential drop Us across the near-substrate plasma sheath. Under low- Us conditions, the ion current density onto the surface of individual nanotips is higher for higher-aspect-ratio nanotips and can exceed the mean ion current density onto the entire nanopattern in up to approximately five times. This effect becomes less pronounced with increasing the substrate bias, with the mean relative enhancement of the ion current density ξi not exceeding ∼1.7. The value of ξi is higher in denser plasmas and behaves differently with the electron temperature Te depending on the substrate bias. When the substrate bias is low, ξi decreases with Te, with the opposite tendency under higher- Us conditions. The results are relevant to the plasma-enhanced chemical-vapor deposition of ordered large-area nanopatterns of vertically aligned carbon nanotips, nanofibers, and nanopyramidal microemitter structures for flat-panel display applications. © 2005 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The kinetics of saturation of Ni catalyst nanoparticle patterns of the three different degrees of order, used as a model for the growth of carbon nanotips on Si, is investigated numerically using a complex model that involves surface diffusion and ion motion equations. It is revealed that Ni catalyst patterns of different degrees of order, with Ni nanoparticle sizes up to 12.5 nm, exhibit different kinetics of saturation with carbon on the Si surface. It is shown that in the cases examined (surface coverage in the range of 1-50%, highly disordered Ni patterns) the relative pattern saturation factor calculated as the ratio of average incubation times for the processes conducted in the neutral and ionized gas environments reaches 14 and 3.4 for Ni nanoparticles of 2.5 and 12.5 nm, respectively. In the highly ordered Ni patterns, the relative pattern saturation factor reaches 3 for nanoparticles of 2.5 nm and 2.1 for nanoparticles of 12.5 nm. Thus, more simultaneous saturation of Ni catalyst nanoparticles of sizes in the range up to 12.5 nm, deposited on the Si substrate, can be achieved in the low-temperature plasma environment than with the neutral gas-based process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large area, highly uniform vertically aligned carbon nanotips (VACNTP) and other nanostructures have been grown on silicon (100) substrates with Ni catalyst in the low-temperature, low-frequency, high-density inductively coupled plasmas (ICP) of methane-hydrogen-argon gas mixtures. The control strategies for the morphology, crystalline structure and chemical states of the resulting nanostructures by varying the growth conditions are proposed. XRD and Roman analyses confirm that the nanotips are well graphitized, which is favorable for the field emission applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of an ordered array of nanocones on a conducting substrate immersed in the plasma on the transport of the plasma ions is investigated. The real conical shape of the cones is rigorously incorporated into the model. The movement of 10^5 CH3+ ions in the plasma sheath modified by the nanocone array is simulated. The ions are driven by the electric fields produced by the sheath and the nanostructures. The surface charge density and the total charge on the nanotips with different aspect ratios are computed. The ion transport simulation provides important characteristics of the displacement and velocity of the ions. The relative ion distribution along the lateral surfaces of the carbon nanotips is computed as well. It is shown that a rigorous account of the realistic nanostructure shape leads to very different distribution of the ion fluxes on the nanostructured surfaces compared to the previously reported works. The ion flux distribution is a critical factor in the nucleation process on the substrate and determines the nanostructure growth patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through a combinatorial approach involving experimental measurement and plasma modelling, it is shown that a high degree of control over diamond-like nanocarbon film sp3/sp2 ratio (and hence film properties) may be exercised, starting at the level of electrons (through modification of the plasma electron energy distribution function). Hydrogenated amorphous carbon nanoparticle films with high percentages of diamond-like bonds are grown using a middle-frequency (2 MHz) inductively coupled Ar + CH4 plasma. The sp3 fractions measured by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in the thin films are explained qualitatively using sp3/sp2 ratios 1) derived from calculated sp3 and sp2 hybridized precursor species densities in a global plasma discharge model and 2) measured experimentally. It is shown that at high discharge power and lower CH4 concentrations, the sp3/sp2 fraction is higher. Our results suggest that a combination of predictive modeling and experimental studies is instrumental to achieve deterministically grown made-to-order diamond-like nanocarbons suitable for a variety of applications spanning from nano-magnetic resonance imaging to spin-flip quantum information devices. This deterministic approach can be extended to graphene, carbon nanotips, nanodiamond and other nanocarbon materials for a variety of applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development, operation, and applications of two configurations of an integrated plasma-aided nanofabrication facility (IPANF) comprising low-frequency inductively coupled plasma-assisted, low-pressure, multiple-target RF magnetron sputtering plasma source, are reported. The two configurations of the plasma source have different arrangements of the RF inductive coil: a conventional external flat spiral "pancake" coil and an in-house developed internal antenna comprising two orthogonal RF current sheets. The internal antenna configuration generates a "unidirectional" RF current that deeply penetrates into the plasma bulk and results in an excellent uniformity of the plasma over large areas and volumes. The IPANF has been employed for various applications, including low-temperature plasma-enhanced chemical vapor deposition of vertically aligned single-crystalline carbon nanotips, growth of ultra-high aspect ratio semiconductor nanowires, assembly of optoelectronically important Si, SiC, and Al1-xInxN quantum dots, and plasma-based synthesis of bioactive hydroxyapatite for orthopedic implants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of flux of carbon-bearing cations over nanopatterned surfaces with conductive nanotips and nonconductive nanoislands is simulated using the Monte-Carlo technique. It is shown that the ion current is focused to nanotip surfaces when the negative substrate bias is low and only slightly perturbed at higher substrate biases. In the low-bias case, the mean horizontal ion displacement caused by the nanotip electric field exceeds 10 nm. However, at higher substrate biases, this value reduces down to 2 nm. In the nonconductive nanopattern case, the ion current distribution is highly nonuniform, with distinctive zones of depleted current density around the nanoislands. The simulation results suggest the efficient means to control ion fluxes in plasma-aided nanofabrication of ordered nanopatterns, such as nanotip microemitter structures and quantum dot or nanoparticle arrays. © World Scientific Publishing Company.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This contribution is focused on plasma-enhanced chemical vapor deposition systems and their unique features that make them particularly attractive for nanofabrication of flat panel display microemitter arrays based on ordered patterns of single-crystalline carbon nanotip structures. The fundamentals of the plasma-based nanofabrication of carbon nanotips and some other important nanofilms and nanostructures are examined. Specific features, challenges, and potential benefits of using the plasma-based systems for relevant nanofabrication processes are analyzed within the framework of the "plasma-building unit" approach that builds up on extensive experimental data on plasma diagnostics and nanofilm/nanostructure characterization, and numerical simulation of the species composition in the ionized gas phase (multicomponent fluid models), ion dynamics and interaction with ordered carbon nanotip patterns, and ab initio computations of chemical structure of single crystalline carbon nanotips. This generic approach is also applicable for nanoscale assembly of various carbon nanostructures, semiconductor quantum dot structures, and nano-crystalline bioceramics. Special attention is paid to most efficient control strategies of the main plasma-generated building units both in the ionized gas phase and on nanostructured deposition surfaces. The issues of tailoring the reactive plasma environments and development of versatile plasma nanofabrication facilities are also discussed.