167 resultados para Carbides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbon potentials corresponding to the two-phase mixtures Cr + Cr23C6, Cr23C6 + Cr7C3, and Cr7C3 + Cr3C2 in the binary system Cr-C were measured in the temperature range 973 to 1173 K by using the methane-hydrogen gas equilibration technique. Special precautions were taken to prevent oxidation of the samples and to minimize thermal segregation in the gas phase. The standard Gibbs energies of formation of Cr23C6, Cr7C3, and Cr3C2 were derived from the measured carbon potentials. These values are compared with those reported in the literature. The Gibbs energies obtained in this study agree well with those obtained from solid-state cells incorporating CaF2 and ThO2(Y2O3) as solid electrolytes and sealed capsule isopiestic measurements reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methane-hydrogen gas equilibration technique has been used to measure the chemical potential of carbon associated with two three-phase fields of the system U-W-C in the temperature range 973 to 1173 K. By combining the values of the chemical potential of carbon in the three-phase fields UC + W + UWC1.75 and UC + UWC1.75 + UWC2 Obtained in this study with the data on the Gibbs energy of formation of UC available in the literature, expressions for the Gibbs energies of formation of the two ternary carbides were derived: Delta(f)G degrees [UWC1.75] = -131, 600 - 300 T (+/-8000) J mol(-1) Delta(f)G degrees [UWC2] = -144, 800 - 32.0 T (+/- 10,000) J mol(-1) Although estimates of Gibbs energies of formation of the two ternary carbides TSWC1.75 and UWC2 have been reported, there have been no previous experimental determinations of thermodynamic properties of these compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uranium-Plutonium mixed carbide with a Pu/(U+Pu) ratio of 0.55 is to be used as the fuel in the Fast Breeder Test Reaotor - (PBTRj at Kalpakkam, India. carbur ization of the stainlese steel clad by this fuel is determined by its carbon potential. - i. Because the carbon potential of this fuel composition is not 1 available in the literature, it was meadured by the methanehydrogen gas equilibration technique. The sample was equilibrated with purified hydrogen and the equilibrium methane-tohydrogen ratio in the gas phase was measured with a flame ionization detector. The carbon potential of the ThC-ThCz as well as Mo-Mo2C system,whiah is an important binary in the aotinide-fission product-carbon systems, were also measured by this technique, in the temperature range 973 K to 1173 K. The data for ! the Mo-MozC system are in agreement with values reported in the literature. The results for the ThC-ThC2 system are different from estimated values with large unaertainty limits given in the literature. The data on (U,Pu) mixed carbide indicates possibility of stainlesss steel clad attack under isothermal equilibrium conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carbothermal hydrogen reduction method was employed for the preparation of activated carbon supported bimetallic carbide. The resultant samples were characterized by BET surface area measurement, X-ray diffraction, and temperature-programmed reduction-mass spectroscopy. The results showed that nanostructured beta-Mo2C can be formed on the activated carbon by carbothermal hydrogen reduction above 700 degreesC. The particle sizes of beta-Mo2C increase with increasing reaction temperatures and Mo loading. The bimetallic CoMo carbide can be synthesized by the carbothermal hydrogen reduction even around 600 degreesC. The bimetallic CoMo carbide is from carbothermal hydrogen reduction of CoMoO4 precursor and is easily formed when the Co/Mo molar ratio is 1.0. Separation of the bimetallic CoMo carbide phase into Mo carbide and Co metal occurs when the temperature of the reduction is above 700 degreesC. The addition of a second metal such as Co and Ni, decreases the formation temperature of carbide because the second metal promotes formation of CHx species from reactive carbon atoms or groups on carbon material and hydrogen, which further carburizes oxide precursors. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the ability of the local density approximation (LDA) in density functional theory to predict the near-edge structure in electron energy-loss spectroscopy in the dipole approximation. We include screening of the core hole within the LDA using Slater's transition state theory. We find that anion K-edge threshold energies are systematically overestimated by 4.22 +/- 0.44 eV in twelve transition metal carbides and nitrides in the rock-salt (B1) structure. When we apply this 'universal' many-electron correction to energy-loss spectra calculated within the transition state approximation to LDA, we find quantitative agreement with experiment to within one or two eV for TiC, TiN and VN. We compare our calculations to a simpler approach using a projected Mulliken density which honours the dipole selection rule, in place of the dipole matrix element itself. We find remarkably close agreement between these two approaches. Finally, we show an anomaly in the near-edge structure in CrN to be due to magnetic structure. In particular, we find that the N K edge in fact probes the magnetic moments and alignments of ther sublattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategies to produce an ultracold sample of carbon atoms are explored and assessed with the help of quantum chemistry. After a brief discussion of the experimental difficulties using conventional methods, two strategies are investigated. The first attempts to exploit charge exchange reactions between ultracold metal atoms and sympathetically cooled C+ ions. Ab initio calculations including electron correlation have been conducted on the molecular ions [LiC]+ and [BeC]+ to determine whether alkali or alkaline earth metals are a suitable buffer gas for the formation of C atoms but strong spontaneous radiative charge exchange ensure they are not ideal. The second technique involves the stimulated production of ultracold C atoms from a gas of laser cooled carbides. Calculations on LiC suggest that the alkali carbides are not suitable but the CH radical is a possible laser cooling candidate thanks to very favourable Frank-Condon factors. A scheme based on a four pulse STIRAP excitation pathway to a Feshbach resonance is outlined for the production of atomic fragments with near zero centre of mass velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbides are important phases in heterogeneous catalysis. However, the understanding of carbide phases is inadequate: Fe and Co are the two commercial catalysts for Fischer-Tropsch (FT) synthesis, and experimental work showed that Fe carbide is the active phase in FT synthesis, whereas the appearance of Co carbide is considered as a possible deactivation cause, TO understand very different catalytic roles of carbides, all the key elementary steps in FT synthesis, that is, CO dissociation, C(1) hydrogenation, and C(1)+C(1) coupling, are extensively investigated on both carbide surfaces using first principles calculations. In particular, the most important issues in FT synthesis, the activity and methane selectivity, on the carbide surfaces are quantitatively determined and analyzed. They are also discussed together with metallic Fe and Co surfaces. It is found that (i) Fe carbide is more active than metallic Fe and has similar methane selectivity to Fe, being consistent with the experiments; and (ii) Co carbide is less active than Co and has higher methane selectivity, providing evidence on the molecular level to support the suggestion that the formation of Co carbide is a cause of relatively high methane selectivity and deactivation on Co catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the work was to prepare an overview about the microstructures present in high-speed steel, focused on the crystallography of the carbides. High-speed steels are currently obtained by casting, powder metallurgy and more recently spray forming. High-speed steels have a high hardness resulting from a microstructure, which consists of a steel matrix (martensite and ferrite), in which embedded carbides of different crystal structure, chemical composition, morphology and size, exist. These carbides are commonly named MxC, where M represents one or more metallic atoms. These carbides can be identified by X-ray diffraction considering M as a unique metallic atom. In this work, it is discussed, in basis of the first principles of physics crystallography, the validation of this identification when it is considered that other atoms in the structure are substitutional. Further, it is discussed some requirements for data acquisition that allows the Rietveld refinement to be applied on carbide crystallography and phase amount determination.