927 resultados para Capillary Zone Electrophoresis
Resumo:
In Brazil, the consumption of extra-virgin olive oil (EVOO) is increasing annually, but there are no experimental studies concerning the phenolic compound contents of commercial EVOO. The aim of this work was to optimise the separation of 17 phenolic compounds already detected in EVOO. A Doehlert matrix experimental design was used, evaluating the effects of pH and electrolyte concentration. Resolution, runtime and migration time relative standard deviation values were evaluated. Derringer's desirability function was used to simultaneously optimise all 37 responses. The 17 peaks were separated in 19min using a fused-silica capillary (50μm internal diameter, 72cm of effective length) with an extended light path and 101.3mmolL(-1) of boric acid electrolyte (pH 9.15, 30kV). The method was validated and applied to 15 EVOO samples found in Brazilian supermarkets.
Resumo:
A simple and fast capillary zone electrophoresis (CZE) method has been developed and validated for quantification of a non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, in pharmaceuticals. The analysis was optimized using 10 mmol L-1 sodium phosphate buffer pH 2.5, +25 kV applied voltage, hydrodynamic injection 0.5 psi for 5 s and direct UV detection at 200 µm. Diazepam (50.0 µg mL-1) was used as internal standard. Under these conditions, nevirapine was analyzed in approximately less than 2.5 min. The analytical curve presented a coefficient of correlation of 0.9994. Limits of detection and quantification were 1.4 µg mL-1 and 4.3 µg mL-1, respectively. Intra- and inter-day precision expressed as relative standard deviations were 1.4% and 1.3%, respectively and the mean recovery was 100.81%. The active pharmaceutical ingredient was subjected to hydrolysis (acid, basic and neutral) and oxidative stress conditions. No interference of degradation products and tablet excipients were observed. This method showed to be rapid, simple, precise, accurate and economical for determination of nevirapine in pharmaceuticals and it is suitable for routine quality control analysis since CE offers benefits in terms of quicker method development and significantly reduced operating costs.
Resumo:
New fast liquid chromatographic and capillary zone electrophoresis methods were developed and validated for simultaneous determination of atenolol and chlortalidone in combined dose tablets. The reversed phase HPLC method was carried out on a CN LiChrosorb (R) (125 x 4 mm, 5 mu m) column. The CZE method was carried out on an uncoated fused-silica capillary of 30 cm x 75 mu m i.d. with 25 mmol L(-1) sodium tetraborate, pH 9.4. The total analysis time was <6 and <2.5 min for HPLC and CZE methods, respectively. Both methods can be used for stability studies as well.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
A simple, fast, inexpensive and reliable capillary zone electrophoresis (CZE) method for the determination of econazole nitrate in cream formulations has been developed and validated. Optimum conditions comprised a pH 2.5 phosphate buffer at 20 mmol L(-1) concentration, +30 kV applied voltage in a 31.5 cm x 50 mu m I.D. capillary. Direct UV detection at 200 nm led to an adequate sensitivity without interference from sample excipients. A single extraction step of the cream sample in hydrochloric acid was performed prior to injection. Imidazole (100 mu g mL(-1)) was used as internal standard. Econazole nitrate migrates in approximately 1.2 min. The analytical curve presented a coefficient of correlation of 0.9995. Detection and quantitation limits were 1.85 and 5.62 mu g mL(-1), respectively. Excellent accuracy and precision were obtained. Recoveries varied from 98.1 to 102.5% and intra- and inter-day precisions, calculated as relative standard deviation (RSD), were better than 2.0%. The proposed CZE method presented advantageous performance characteristics and it can be considered suitable for the quality control of econazole nitrate cream formulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Published mobility measurements obtained by capillary zone electrophoresis of human growth hormone peptides are described reasonably well by the classical theoretical relationships for electrophoretic migration. This conformity between theory and experiment has rendered possible a more critical assessment of a commonly employed empirical relationship between mobility (u), net charge (z) and molecular mass (M) of peptides in capillary electrophoresis. The assumed linear dependence between u and z/M-2/3 is shown to be an approximate description of a shallow curvilinear dependence convex to the abscissa. An improved procedure for the calculation of peptide charge (valence) is also described. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Le but de ce travail doctoral était le développement de méthodes analytiques pour la détermination dethyl glucuronide et dethyl sulfate. Ces deux substances sont des métabolites directs de lethanol qui peuvent être détectées pendant des heures jusqu'à des jours dans des fluides corporels, après que léthanol ait été complètement éliminé du corps humain. Ce sont donc des marqueurs de consommation récente d'alcool.La majorité des expériences ont été effectuées en utilisant l'électrophorèse capillaire. Il était envisagé de fournir des méthodes utilisables dans des laboratoires de routine. Des méthodes électrophorétiques ont été développées et optimisées pour la détermination dethyl sulfate dans le sérum et l'urine ainsi que pour lethyl glucuronide dans le sérum. Lethyl glucuronide urinaire a pu être déterminé par un immunoassay commerciale qui a en plus été adapté avec succès pour des échantillons de sérum. Avec toutes ces méthodes d'analyse il était possible d'observer les deux marqueurs de consommation d'alcool récente, même une consommation aussi basse qu'un verre de boissons alcooliques.Finalement, une étude englobant plus de 100 échantillons aété effectuée avec l'ambition de déterminer les valeurs de référence pour lethyl glucuronide dans le sérum et l'urine. De plus, la nécessité de normaliser les échantillons d'urine par rapport à la dilution a été investiguée. Grâce à cette étude des valeurs de cut-off et une base statistique pour l'interprétation probabiliste ont pu être proposées.
Resumo:
Proteolysis of Serpa cheese produced traditionally (B) and semi-industrially (C) was evaluated for the first time by determination of nitrogen content and capillary zone electrophoresis (CZE). A citrate dispersion of cheese was fractionated to determine the nitrogen in pH 4.4, trichloroacetic and phosphotungstic acid soluble fractions (pH 4.4-SN, TCA-SN and PTA-SN, respectively). The pH 4.4-SN was significantly higher for B ( P < 0.001), while TCA-SN was significantly higher for C ( P < 0.001). PTA-SN was also higher for C but at 60 days ripening no significant difference was found between B and C. Degradation of alpha(s1) - and beta-caseins evaluated by CZE was in good agreement with the maturation index (pH 4.4-SN/TN).
Resumo:
An alternative method for determination of total trans fatty acids expressed as elaidic acid by capillary zone electrophoresis (CZE) under indirect UV detection at 224 nm within an analysis time of 7.5 min was developed. The optimized running electrolyte includes 15.0 mmol L(-1) KH(2)PO(4)/Na(2)HPO(4) buffer (pH similar to 7.0), 4.0 mmol L(-1) SDBS, 8.0 mmol L(-1) Brij35, 45%v/v ACN, 8% methanol, and 1.5% v/v n-octanol. Baseline separation of the critical pair C18-9cis/C18:1-9t: with a resolution higher than 1.5 was achieved using C15:0 as the internal standard. The optimum capillary electrophoresis (CE) conditions for the background electrolyte were established with the aid of Raman spectroscopy and experiments of a 3(2) factorial design. After response factor (R(F)) calculations, the CE method was applied to total trans fatty acid (TTFA) analysis in a hydrogenated vegetable fat (HVF) sample, and compared with the American Oil Chemists` Society (AOCS) official method by gas chromatography (GC). The methods were compared with an independent sample t test, and no significant difference was found between CE and GC methods within the 95% confidence interval for six genuine replicates of TTFA analysis (p-value > 0.05). The CE method was applied to TTFA analysis in a spreadable cheese sample. Satisfactory results were obtained, indicating that the optimized methodology can be used for trans fatty acid determination for these samples.
Resumo:
The proposed method for the identification of adulteration was based on the controlled acid hydrolysis of xylan and starch present in some vegetable adulterants, followed by the analysis of the resulting xylose and glucose, which are the monosaccharides that compose, respectively, the two polysaccharides. The acid hydrolysis with HCl increases the ionic strength of the sample, which impairs the electrophoretic separation. Thus, a neutralization step based on anion exchange resin was necessary. The best separations were obtained in NaOH 80 mmol/L, CTAB 0.5 mmol/L, and methanol 30% v/v. Because of the high value of pH, monosaccharides are separated as anionic species in such running electrolyte. The LOQ for both monosaccharides was 0.2 g for 100 g of dry matter, which conforms to the tolerable limits.
Resumo:
Capillary electrophoresis with capacitively coupled contactless conductivity detection was successfully used to quantify N-acetylglucosamine and five N-acetyl-chitooligosaccharides (C2-C6) produced after reaction with a purified chitinase (TmChi) from Tenebrio molitor (Coleoptera). No derivatization process was necessary. The separation was developed using 10 mM NaOH with 10% (v/v) acetonitrile as background electrolyte and homemade equipment with a system that avoids the harmful effect of electrolysis. The limit of detection for all oligosaccharides was ca. 3 mu M, and the results indicated that the larger the oligosaccharide, the higher the sensitivity. Analysis of the chitooligosaccharides produced revealed that TmChi has an endolytic cleavage pattern with C5 as the best substrate (higher catalytic efficiency k(cat)/K-M) releasing C2 and C3. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Fluoroacetate is a highly toxic species naturally found in plants and in commercial products (compound 1080) for population control of several undesirable animal species. However, it is non-selective and toxic to many other animals including humans, and thus its detection is very important for forensic purposes. This paper presents a sensitive and fast method for the determination of fluoroacetate in blood serum using capillary electrophoresis with capacitively coupled contactless conductivity detection. Serum blood samples were treated with ethanol to remove proteins. The samples were analyzed in BGE containing 15 mmol/L histidine and 30 mmol/L gluconic acid (pH 3.85). The calibration curve was linear up to 75 mu mol/L (R(2) = 0.9995 for N = 12). The detection limit in the blood serum was 0.15 mg/kg, which is smaller than the lethal dose for humans and other animals. Fluoride, a metabolite of the fluoroacetate defluorination, could also be detected for levels greater than 20 mu mol/L, when polybrene was used for reversion of the EOF. CTAB and didecyldimethylammonium bromide are not useful for this task because of the severe reduction of the fluoride level. However, no interference was observed for fluoroacetate.