965 resultados para Capillary Permeability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of strial capillary permeability using fluorescent microspheres and immunohistochemistry in mice that do or do not exhibit a reduction in endocochlear potential following a single, intense noise exposure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hantaviruses have a tri-segmented negative-stranded RNA genome. The S segment encodes the nucleocapsid protein (N), M segment two glycoproteins, Gn and Gc, and the L segment the RNA polymerase. Gn and Gc are co-translationally cleaved from a precursor and targeted to the cis-Golgi compartment. The Gn glycoprotein consists of an external domain, a transmembrane domain and a C-terminal cytoplasmic domain. In addition, the S segment of some hantaviruses, including Tula and Puumala virus, have an open reading frame (ORF) encoding a nonstructural potein NSs that can function as a weak interferon antagonist. The mechanisms of hantavirus-induced pathogenesis are not fully understood but it is known that both hemorrhagic fever with renal syndrome (HFRS) and hantavirus (cardio) pulmonary syndrome (HCPS) share various features such as increased capillary permeability, thrombocytopenia and upregulation of TNF-. Several hantaviruses have been reported to induce programmed cell death (apoptosis), such as TULV-infected Vero E6 cells which is known to be defective in interferon signaling. Recently reports describing properties of the hantavirus Gn cytoplasmic tail (Gn-CT) have appeared. The Gn-CT of hantaviruses contains animmunoreceptor tyrosine-based activation motif (ITAM) which directs receptor signaling in immune and endothelial cells; and contain highly conserved classical zinc finger domains which may have a role in the interaction with N protein. More functions of Gn protein have been discovered, but much still remains unknown. Our aim was to study the functions of Gn protein from several aspects: synthesis, degradation and interaction with N protein. Gn protein was reported to inhibit interferon induction and amplication. For this reason, we also carried out projects studying the mechanisms of IFN induction and evasion by hantavirus. We first showed degradation and aggresome formation of the Gn-CT of the apathogenic TULV. It was reported earlier that the degradation of Gn-CT is related to the pathogenicity of hantavirus. We found that the Gn-CT of the apathogenic hantaviruses (TULV, Prospect Hill virus) was degraded through the ubiquitin-proteasome pathway, and TULV Gn-CT formed aggresomes upon treatment with proteasomal inhibitor. Thus the results suggest that degradation and aggregation of the Gn-CT may be a general property of most hantaviruses, unrelated to pathogenicity. Second, we investigated the interaction of TULV N protein and the TULV Gn-CT. The Gn protein is located on the Golgi membrane and its interaction with N protein has been thought to determine the cargo of the hantaviral ribonucleoprotein which is an important step in virus assembly, but direct evidence has not been reported. We found that TULV Gn-CT fused with GST tag expressed in bacteria can pull-down the N protein expressed in mammalian cells; a mutagenesis assay was carried out, in which we found that the zinc finger motif in Gn-CT and RNA-binding motif in N protein are indispensable for the interaction. For the study of mechanisms of IFN induction and evasion by Old World hantavirus, we found that Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5 -termini of their genomic RNAs are monophosphorylated. DsRNA and tri-phosphorylated RNA are considered to be critical activators of innate immnity response by interacting with PRRs (pattern recognition receptors). We examined systematically the 5´-termini of hantavirus genomic RNAs and the dsRNA production by different species of hantaviruses. We found that no detectable dsRNA was produced in cells infected by the two groups of the old world hantaviruses: Seoul, Dobrava, Saaremaa, Puumala and Tula. We also found that the genomic RNAs of these Old World hantaviruses carry 5´-monophosphate and are unable to trigger interferon induction. The antiviral response is mainly mediated by alpha/beta interferon. Recently the glycoproteins of the pathogenic hantaviruses Sin Nombre and New York-1 viruses were reported to regulate cellular interferon. We found that Gn-CT can inhibit the induction of IFN activation through Toll-like receptor (TLR) and retinoic acid-inducible gene I-like RNA helicases (RLH) pathway and that the inhibition target lies at the level of TANK-binding kinase 1 (TBK-1)/ IKK epislon complex and myeloid differentiation primary response gene (88) (MyD88) / interferon regulatory factor 7 (IRF-7) complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs) have been implicated in the progressive vascular dysfunction which occurs during diabetic retinopathy. In the current study we have examined the role of these adducts in blood-retinal barrier (BRB) breakdown and investigated expression of the vasopermeabilizing agent vascular endothelial growth factor (VEGF) in the retina. When normoglycemic rats were injected with AGE-modified albumin daily for up to 10 days there was widespread leakage of FITC-dextran and serum albumin from the retinal vasculature when compared to control animals treated with nonmodified albumin. Ultrastructural examination of the vasculature revealed areas of attenuation of the retinal vascular endothelium and increased vesicular organelles only in the AGE-exposed rats. Quantitative RT-PCR and in situ hybridization demonstrated a significant increase in retinal VEGF mRNA expression (P <0.05). These results suggest that AGEs can initiate BRB dysfunction in nondiabetic rats and a concomitant increase in retinal VEGF expression. These findings may have implications for the role of AGEs in the pathogenesis of diabetic retinopathy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: A critical event in the pathogenesis of diabetic retinopathy is the inappropriate adherence of leukocytes to the retinal capillaries. Advanced glycation end-products (AGEs) are known to play a role in chronic inflammatory processes, and the authors postulated that these adducts may play a role in promoting pathogenic increases in proinflammatory pathways within the retinal microvasculature. METHODS: Retinal microvascular endothelial cells (RMECs) were treated with glycoaldehyde-modified albumin (AGE-Alb) or unmodified albumin (Alb). NFkappaB DNA binding was measured by electromobility shift assay (EMSA) and quantified with an ELISA: In addition, the effect of AGEs on leukocyte adhesion to endothelial cell monolayers was investigated. Further studies were performed in an attempt to confirm that this was AGE-induced adhesion by co-incubation of AGE-treated cells with soluble receptor for AGE (sRAGE). Parallel in vivo studies of nondiabetic mice assessed the effect of intraperitoneal delivery of AGE-Alb on ICAM-1 mRNA expression, NFkappaB DNA-binding activity, leukostasis, and blood-retinal barrier breakdown. RESULTS: Treatment with AGE-Alb significantly enhanced the DNA-binding activity of NFkappaB (P = 0.0045) in retinal endothelial cells (RMECs) and increased the adhesion of leukocytes to RMEC monolayers (P = 0.04). The latter was significantly reduced by co-incubation with sRAGE (P <0.01). Mice infused with AGE-Alb demonstrated a 1.8-fold increase in ICAM-1 mRNA when compared with control animals (P <0.001, n = 20) as early as 48 hours, and this response remained for 7 days of treatment. Quantification of retinal NFkappaB demonstrated a threefold increase with AGE-Alb infusion in comparison to control levels (AGE Alb versus Alb, 0.23 vs. 0.076, P <0.001, n = 10 mice). AGE-Alb treatment of mice also caused a significant increase in leukostasis in the retina (AGE-Alb versus Alb, 6.89 vs. 2.53, n = 12, P <0.05) and a statistically significant increase in breakdown of the blood-retinal barrier (AGE Alb versus Alb, 8.2 vs. 1.6 n = 10, P <0.001). CONCLUSIONS: AGEs caused upregulation of NFkappaB in the retinal microvascular endothelium and an AGE-specific increase in leukocyte adhesion in vitro was also observed. In addition, increased leukocyte adherence in vivo was demonstrated that was accompanied by blood-retinal barrier dysfunction. These findings add further evidence to the thinking that AGEs may play an important role in the pathogenesis of diabetic retinopathy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinal vascular leakage, inflammation, and neovascularization (NV) are features of diabetic retinopathy (DR). Fenofibrate, a peroxisome proliferator-activated receptor a (PPARa) agonist, has shown robust protective effects against DR in type 2 diabetic patients, but its effects on DR in type 1 diabetes have not been reported. This study evaluated the efficacy of fenofibrate on DR in type 1 diabetes models and determined if the effect is PPARa dependent. Oral administration of fenofibrate significantly ameliorated retinal vascular leakage and leukostasis in streptozotocin-induced diabetic rats and in Akita mice. Favorable effects on DR were also achieved by intravitreal injection of fenofibrate or another specific PPARa agonist. Fenofibrate also ameliorated retinal NV in the oxygen-induced retinopathy (OIR) model and inhibited tube formation and migration in cultured endothelial cells. Fenofibrate also attenuated overexpression of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and vascular endothelial growth factor (VEGF) and blocked activation of hypoxia-inducible factor-1 and nuclear factor-?B in the retinas of OIR and diabetic models. Fenofibrate's beneficial effects were blocked by a specific PPARa antagonist. Furthermore, Ppara knockout abolished the fenofibrate-induced downregulation of VEGF and reduction of retinal vascular leakage in DR models. These results demonstrate therapeutic effects of fenofibrate on DR in type 1 diabetes and support the existence of the drug target in ocular tissues and via a PPARa-dependent mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The pathogenesis of diabetic retinopathy (DR) is not fully understood. Clinical studies suggest that dyslipidemia is associated with the initiation and progression of DR. However, no direct evidence supports this theory.

Methods: Immunostaining of apolipoprotein B100 (ApoB100, a marker of low-density lipoprotein [LDL]), macrophages, and oxidized LDL was performed in retinal sections from four different groups of subjects: nondiabetic, type 2 diabetic without clinical retinopathy, diabetic with moderate nonproliferative diabetic retinopathy (NPDR), and diabetic with proliferative diabetic retinopathy (PDR). Apoptosis was characterized using the TUNEL assay. In addition, in cell culture studies using in vitro-modi?ed LDL, the induction of apoptosis by heavily oxidized-glycated LDL (HOG-LDL) in human retinal capillary
pericytes (HRCPs) was assessed.

Results: Intraretinal immuno?uorescence of ApoB100 increased with the severity of DR. Macrophages were prominent only in sections from diabetic patients with PDR. Merged images revealed that ApoB100 partially colocalized with macrophages. Intraretinal oxidized LDL was absent in nondiabetic subjects but present in all three diabetic groups, increasing with the severity of DR. TUNEL-positive cells were present in retinas from diabetic subjects but absent in those from nondiabetic subjects. In cell culture, HOG-LDL induced the activation of caspase, mitochondrial dysfunction, and apoptosis in
HRCPs.

Conclusions: These ?ndings suggest a potentially important role for extravasated, modi?ed LDL in promoting DR by promoting apoptotic pericyte loss.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carrageenin-induced inflammatory responses in the hindpaws of rats were quantitated by measuring: (1) alterations in volumes of the paws; and (2) alterations in concentration of dye, previously injected intravenously, which was recovered in perfusates from the paws. The inflammatory response in one paw was attenuated by previously inducing an inflammatory response in the contralateral paw. The effect was abolished by pretreatment with insulin. Indexes of adrenal activity were increased after the induction of the inflammatory response and they were not attenuated by pretreatment with insulin. Adrenal hyperactivity was characterized by increased serum corticosterone concentration, decreased adrenal ascorbic acid content, and reduced number of circulating eosinophils. It is concluded that inflammatory stimuli which lead to alterations in microvessels depend on a facilitatory effect of insulin. This effect is antagonized by glucocorticoids released in enhanced concentrations after the application of noxious stimuli. Therefore, endogenous insulin and glucocorticoids act as modulators of inflammatory responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Splanchnic artery occlusion shock is caused by increased capillary permeability and cellular injury precipitated by oxygen derived free radicals following ischemia and reperfusion of splanchnic organs. The purpose of this study was to assess the role of several well-known oxygen- derived free radical scavengers in ameliorating or preventing this syndrome. Study design: Anesthetized rats were subjected to periods of occlusion of the visceral arteries and reperfusion. Tocopherol, taurine, selenium or a 'cocktail' of these three agents was injected subcutaneously for 4 consecutive days prior to operation. Mean arterial blood pressure was measured throughout the experimental period. Fluorometry and technetium-99m pyrophosphate counting of the visceral organs were performed as well as a histologic grading system for intestinal viability. Results: Final mean arterial blood pressure associated with the 'cocktail' and selenium groups was 79.1 ± 27.4 mmHg and 83.6 ± 17.8 mmHg, respectively. These values were significantly higher than the control group, 40.8 ± 11.4 mmHg (P < 0.05). Similar patterns of the benefit of selenium in contrast with the other groups were obtained with fluorescein perfusion, radioisotopic activity and histologic analysis. Conclusion: Pretreatment with selenium of splanchnic ischemia and reperfusion in the rat improves mean arterial blood pressure and microcirculatory visceral perfusion. Further analysis of the precise protective mechanism of selenium for reperfusion injury will enable visceral organs to withstand the consequences of increased capillary leakage and oxidant injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A total of 360 pacus (Piaractus mesopotamicus) were used to study vascular permeability (VP) and inflammatory cell component (CC) in induced aerocystitis in P. mesopotamicus through inoculation of inactivated Aeromonas hydrophila, and the effect of steroidal and nonsteroidal anti-inflammatory drugs. It was observed that after inoculation of A. hydrophila, the maximum VP occurred 180 min post-stimulus (MPS). Pretreatment with anti-inflammatory drugs inhibited VP, and the inhibitory effect of dexamethasone was seen earlier than the effects caused by meloxicam and indomethacin. Inoculation of the bacterium caused a gradual increase in the accumulation of cells, which reached a maximum 24 h post-stimulus (HPS). Pretreatment with dexamethasone, indomethacin and meloxicam reduced the accumulation of lymphocytes, thrombocytes, granulocytes and macrophages. There was no significant difference between the different doses of the drugs tested. The results suggest that eicosanoids and pro-inflammatory cytokines participate in chemical mediation in acute inflammation in pacus. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Septic shock remains one of the most common challenges for the small animal practicing, presenting high mortality rates frequently associated with late identification of this syndrome, as well as an inappropriate treatment. In general, disruption of homeostasis occurs with an intense activation of inflammatory cascade, which leads to a damage to endothelial cells and an exposure to these cytokines, which will result in vasodilation and increased capillary permeability. Thus, there is a drop in blood pressure, even after aggressive fluid resuscitation. Therefore, drugs such as vasopressors, which act by increasing systemic vascular resistance, and inotropes, which have an effect on heart pump, should be administered in order to raise blood pressure, ensuring adequate tissue perfusion. The objective of this review was to gather information about the various drugs used in vasopressors/inotropes therapy, trying to explain the role of each one in different situations, in order to increase the survival rate in dogs affected with septic shock

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spiranthera odoratissima A. St.-Hil., 'manaca', is a medicinal species used in Brazil, especially in central region, for the treatment of several diseases such as pain and inflammation. In this study, the methanol/aqueous phase of the ethanol extract of the leaves of 'manaca' (MAP), at the doses of 50, 150 and 500 mg/kg was used to evaluate the anti-inflammatory and/or antinociceptive effects and the possible anti-inflammatory mechanism. The antinociceptive and anti-inflammatory activities of MAP were assessed using formalin test, carrageenan-induced paw oedema. The myeloperoxidase activity, capillary permeability, leukocyte migration and tumour necrosis factor alpha (TNF-alpha) levels were evaluated in pleural exudate. The MAP reduced the licking time only in the later phase of formalin test, and showed anti-inflammatory activity by reducing the paw oedema, migration cell, myeloperoxidase activity, capillary permeability and TNF-alpha levels. In conclusion, we confirmed the inflammatory activity of MAP and affirm that this effect involves the reduction of TNF-alpha level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incipient diabetic retinopathy is characterized by increased capillary permeability and progressive capillary occlusion. The earliest structural change is the loss of pericytes (PC) from the retinal capillaries. With the availability of the XLacZ mouse, which expresses the LacZ reporter in a PC/vascular smooth muscle cell (vSMC) specific fashion, we quantitatively assessed the temporal dynamics of smooth muscle cells in arterioles under hyperglycemic conditions. We induced stable hyperglycemia in XLacZ mice. After 4, 8, and 12 weeks of diabetes retinae were isolated and beta-galactosidase/lectin stained. The numbers of smooth muscle cells were counted in retinal whole mounts, and diameters of retinal radial and branching arterioles and venules were analyzed at different distances apart from the center of the retina. After eight weeks of diabetes, the numbers of vSMCs were significantly reduced in radial arterioles 1000 microm distant from the optic disc. At proximal sites of branching arterioles (400 microm distant from the center), and at distal sites (1000 microm), vSMC were significantly reduced already after 4 weeks (to a maximum of 31 %). These changes were not associated with any measurable variation in vessel diameters. These data indicate quantitatively that hyperglycemia not only causes pericyte loss, but also loss of vSMCs in the retinal vasculature. Our data suggest that arteriolar vSMC in the eye underlie similar regulations which induce early pericyte loss in the diabetic retina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flash pulmonary edema (FPE) is a general clinical term used to describe a particularly dramatic form of acute decompensated heart failure. Well-established risk factors for heart failure such as hypertension, coronary ischemia, valvular heart disease, and diastolic dysfunction are associated with acute decompensated heart failure as well as with FPE. However, endothelial dysfunction possibly secondary to an excessive activity of renin-angiotensin-aldosterone system, impaired nitric oxide synthesis, increased endothelin levels, and/or excessive circulating catecholamines may cause excessive pulmonary capillary permeability and facilitate FPE formation. Renal artery stenosis particularly when bilateral has been identified has a common cause of FPE. Lack of diurnal variation in blood pressure and a widened pulse pressure have been identified as risk factors for FPE. This review is an attempt to delineate clinical and pathophysiological mechanisms responsible for FPE and to distinguish pathophysiologic, clinical, and therapeutic aspects of FPE from those of acute decompensated heart failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cellular form of the prion protein (PrP(c)) is necessary for the development of prion diseases and is a highly conserved protein that may play a role in neuroprotection. PrP(c) is found in both blood and cerebrospinal fluid and is likely produced by both peripheral tissues and the central nervous system (CNS). Exchange of PrP(c) between the brain and peripheral tissues could have important pathophysiologic and therapeutic implications, but it is unknown whether PrP(c) can cross the blood-brain barrier (BBB). Here, we found that radioactively labeled PrP(c) crossed the BBB in both the brain-to-blood and blood-to-brain directions. PrP(c) was enzymatically stable in blood and in brain, was cleared by liver and kidney, and was sequestered by spleen and the cervical lymph nodes. Circulating PrP(c) entered all regions of the CNS, but uptake by the lumbar and cervical spinal cord, hypothalamus, thalamus, and striatum was particularly high. These results show that PrP(c) has bidirectional, saturable transport across the BBB and selectively targets some CNS regions. Such transport may play a role in PrP(c) function and prion replication.