958 resultados para Capacity Planning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthcare professionals and the public have increasing concerns about the ability of emergency departments to meet current demands. Increased demand for emergency services, mainly caused by a growing number of minor and moderate injuries has reached crisis proportions, especially in the United Kingdom. Numerous efforts have been made to explore the complex causes because it is becoming more and more important to provide adequate healthcare within tight budgets. Optimisation of patient pathways in the emergency department is therefore an important factor. This paper explores the possibilities offered by dynamic simulation tools to improve patient pathways using the emergency department of a busy university teaching hospital in Switzerland as an example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research focuses on developing a capacity planning methodology for the emerging concurrent engineer-to-order (ETO) operations. The primary focus is placed on the capacity planning at sales stage. This study examines the characteristics of capacity planning in a concurrent ETO operation environment, models the problem analytically, and proposes a practical capacity planning methodology for concurrent ETO operations in the industry. A computer program that mimics a concurrent ETO operation environment was written to validate the proposed methodology and test a set of rules that affect the performance of a concurrent ETO operation. ^ This study takes a systems engineering approach to the problem and employs systems engineering concepts and tools for the modeling and analysis of the problem, as well as for developing a practical solution to this problem. This study depicts a concurrent ETO environment in which capacity is planned. The capacity planning problem is modeled into a mixed integer program and then solved for smaller-sized applications to evaluate its validity and solution complexity. The objective is to select the best set of available jobs to maximize the profit, while having sufficient capacity to meet each due date expectation. ^ The nature of capacity planning for concurrent ETO operations is different from other operation modes. The search for an effective solution to this problem has been an emerging research field. This study characterizes the problem of capacity planning and proposes a solution approach to the problem. This mathematical model relates work requirements to capacity over the planning horizon. The methodology is proposed for solving industry-scale problems. Along with the capacity planning methodology, a set of heuristic rules was evaluated for improving concurrent ETO planning. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The widespread implementation of Manufacturing Resource Planning (MRPII) systems in this country and abroad and the reported dissatisfaction with their use formed the initial basis of this piece of research which concentrates on the fundamental theory and design of the Closed Loop MRPII system itself. The dissertation concentrates on two key aspects namely; how Master Production Scheduling is carried out in differing business environments and how well the `closing of the loop' operates by checking the capcity requirements of the different levels of plans within an organisation. The main hypothesis which is tested is that in U.K. manufacturing industry, resource checks are either not being carried out satisfactorily or they are not being fed back to the appropriate plan in a timely fashion. The research methodology employed involved initial detailed investigations into Master Scheduling and capacity planning in eight diverse manufacturing companies. This was followed by a nationwide survey of users in 349 companies, a survey of all the major suppliers of Production Management software in the U.K. and an analysis of the facilities offered by current software packages. The main conclusion which is drawn is that the hypothesis is proved in the majority of companies in that only just over 50% of companies are attempting Resource and Capacity Planning and only 20% are successfully feeding back CRP information to `close the loop'. Various causative factors are put forward and remedies are suggested.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis focused upon the development of improved capacity analysis and capacity planning techniques for railways. A number of innovations were made and were tested on a case study of a real national railway. These techniques can reduce the time required to perform decision making activities that planners and managers need to perform. As all railways need to be expanded to meet increasing demands, the presumption that analytical capacity models can be used to identify how best to improve an existing network at least cost, was fully investigated. Track duplication was the mechanism used to expanding a network's capacity, and two variant capacity expansion models were formulated. Another outcome of this thesis is the development and validation of bi objective models for capacity analysis. These models regulate the competition for track access and perform a trade-off analysis. An opportunity to develop more general mulch-objective approaches was identified.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Changing the topology of a railway network can greatly affect its capacity. Railway networks however can be altered in a multitude of different ways. As each way has significant immediate and long term financial ramifications, it is a difficult task to decide how and where to expand the network. In response some railway capacity expansion models (RCEM) have been developed to help capacity planning activities, and to remove physical bottlenecks in the current railway system. The exact purpose of these models is to decide given a fixed budget, where track duplications and track sub divisions should be made, in order to increase theoretical capacity most. These models are high level and strategic, and this is why increases to the theoretical capacity is concentrated upon. The optimization models have been applied to a case study to demonstrate their application and their worth. The case study evidently shows how automated approaches of this nature could be a formidable alternative to current manual planning techniques and simulation. If the exact effect of track duplications and sub-divisions can be sufficiently approximated, this approach will be very applicable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This note presents a contingent-claims approach to strategic capacity planning. We develop models for capacity choice and expansion decisions in a single firm environment where investment is irreversible and demand is uncertain. These models illustrate specifically the relevance of path-dependent options analysis to planning capacity investments when the firm adopts demand tracking or average capacity strategies. It is argued that Asian/average type real options can explain hysteresis phenomena in addition to providing superior control of assets in place.