947 resultados para Canonical variable analysis
Resumo:
The mechanisms involved in the control of growth in chickens are too complex to be explained only under univariate analysis because all related traits are biologically correlated. Therefore, we evaluated broiler chicken performance under a multivariate approach, using the canonical discriminant analysis. A total of 1920 chicks from eight treatments, defined as the combination of four broiler chicken strains (Arbor Acres, AgRoss 308, Cobb 500 and RX) from both sexes, were housed in 48 pens. Average feed intake, average live weight, feed conversion and carcass, breast and leg weights were obtained for days 1 to 42. Canonical discriminant analysis was implemented by SAS((R)) CANDISC procedure and differences between treatments were obtained by the F-test (P < 0.05) over the squared Mahalanobis` distances. Multivariate performance from all treatments could be easily visualised because one graph was obtained from two first canonical variables, which explained 96.49% of total variation, using a SAS((R)) CONELIP macro. A clear distinction between sexes was found, where males were better than females. Also between strains, Arbor Acres, AgRoss 308 and Cobb 500 (commercial) were better than RX (experimental), Evaluation of broiler chicken performance was facilitated by the fact that the six original traits were reduced to only two canonical variables. Average live weight and carcass weight (first canonical variable) were the most important traits to discriminate treatments. The contrast between average feed intake and average live weight plus feed conversion (second canonical variable) were used to classify them. We suggest analysing performance data sets using canonical discriminant analysis.
Resumo:
The use of simple and multiple correspondence analysis is well-established in socialscience research for understanding relationships between two or more categorical variables.By contrast, canonical correspondence analysis, which is a correspondence analysis with linearrestrictions on the solution, has become one of the most popular multivariate techniques inecological research. Multivariate ecological data typically consist of frequencies of observedspecies across a set of sampling locations, as well as a set of observed environmental variablesat the same locations. In this context the principal dimensions of the biological variables aresought in a space that is constrained to be related to the environmental variables. Thisrestricted form of correspondence analysis has many uses in social science research as well,as is demonstrated in this paper. We first illustrate the result that canonical correspondenceanalysis of an indicator matrix, restricted to be related an external categorical variable, reducesto a simple correspondence analysis of a set of concatenated (or stacked ) tables. Then weshow how canonical correspondence analysis can be used to focus on, or partial out, aparticular set of response categories in sample survey data. For example, the method can beused to partial out the influence of missing responses, which usually dominate the results of amultiple correspondence analysis.
Resumo:
Executive functioning (EF), which is considered to govern complex cognition, and verbal memory (VM) are constructs assumed to be related. However, it is not known the magnitude of the association between EF and VM, and how sociodemographic and psychological factors may affect this relationship, including in normal aging. In this study, we assessed different EF and VM parameters, via a battery of neurocognitive/psychological tests, and performed a Canonical Correlation Analysis (CCA) to explore the connection between these constructs, in a sample of middle- aged and older healthy individuals without cognitive impairment (N = 563, 50+ years of age). The analysis revealed a positive and moderate association between EF and VM independently of gender, age, education, global cognitive performance level, and mood. These results confirm that EF presents a significant association with VM performance.
Resumo:
A Method is offered that makes it possible to apply generalized canonicalcorrelations analysis (CANCOR) to two or more matrices of different row and column order. The new method optimizes the generalized canonical correlationanalysis objective by considering only the observed values. This is achieved byemploying selection matrices. We present and discuss fit measures to assessthe quality of the solutions. In a simulation study we assess the performance of our new method and compare it to an existing procedure called GENCOM,proposed by Green and Carroll. We find that our new method outperforms the GENCOM algorithm both with respect to model fit and recovery of the truestructure. Moreover, as our new method does not require any type of iteration itis easier to implement and requires less computation. We illustrate the methodby means of an example concerning the relative positions of the political parties inthe Netherlands based on provincial data.
Resumo:
Canonical Correlation Analysis for Interpreting Airborne Laser Scanning Metrics along the Lorenz Curve of Tree Size Inequality
Resumo:
The pattern of correlation between two sets of variables can be tested using canonical variate analysis (CVA). CVA, like principal components analysis (PCA) and factor analysis (FA) (Statnote 27, Hilton & Armstrong, 2011b), is a multivariate analysis Essentially, as in PCA/FA, the objective is to determine whether the correlations between two sets of variables can be explained by a smaller number of ‘axes of correlation’ or ‘canonical roots’.
Resumo:
Loss of connectivity in impounded rivers is among the impacts imposed by dams, and mitigation measures such as fish passages might not accomplish their purpose of reestablishing an efficient bi-directional gene flow in the fish populations affected. As a consequence, fish populations remain fragmented, and a new interpopulational structure may develop, with increased risk of reduced genetic diversity and stochastic extinction. In order to evaluate the effects of the Gavio Peixoto Dam, which was constructed almost a century ago on the Jacar,-Gua double dagger u River in the Upper Parana River basin, Brazil, a comparative morphometric study was undertaken on the populations of the Neotropical migratory characid fish Salminus hilarii living up- and downstream of this dam. Population dynamics, spatial segregation, and habitat use by different age classes were monitored for 2 years. We found that segregation caused by the dam and long periods with no efficient connection by fish passages have led to fragmentation and interpopulational structuring of S. hilarii, as revealed by canonical variable analysis of morphometric features. The fish populations occupying the up- and downstream sections have succeeded in performing short-distance reproductive migrations in the main river and tributaries, have found suitable habitats for completing their life cycle, and have been able to maintain distinct small-sized populations so far.
Resumo:
We discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers A simplified model of 3D brain connectivity incorporating both short- and long-range connections served for testing. To mimic M/EEG recordings we sampled this model via non-overlapping regions and weighted nodes and connections according to their proximity to the recording sites We used various complex network models for reference and tried to classify sampled versions of the ""brain-like"" network as one of these archetypes It was found that sampled networks may substantially deviate in topology from the respective original networks for small sample sizes For experimental studies this may imply that surface recordings can yield network structures that might not agree with its generating 3D network. (C) 2010 Elsevier Inc All rights reserved
Resumo:
Os ciclídeos compõem uma das mais diversas famílias de peixes dulcícolas com 1.900 espécies. Espécies como A. heckelii, H. efasciatus e M. insignis são coletados das reservas de desenvolvimento sustentável de Amanã e Mamirauá de acordo com o projeto de manejo sustentável. Para investigar as variações entre as variáveis morfológicas associadas com a alimentação das espécies para as reservas Amanã e Mamirauá no médio Solimões, foi feita uma análise após eliminar o efeito do tamanho corporal. As três espécies formaram diferentes grupos por espécies, por grupos etários e por ambientes. Os principais caracteres para a formação dos grupos foram a largura da boca e comprimento da cabeça. Diferenças entre os juvenis e os adultos nos atributos área relativa do olho e razão-aspecto da nadadeira caudal foram significativas. A composição da dieta indicou que as três espécies estudadas apresentaram uma convergência alimentar por insetos em ambos os ambientes.
Resumo:
In the nonparametric framework of Data Envelopment Analysis the statistical properties of its estimators have been investigated and only asymptotic results are available. For DEA estimators results of practical use have been proved only for the case of one input and one output. However, in the real world problems the production process is usually well described by many variables. In this paper a machine learning approach to variable aggregation based on Canonical Correlation Analysis is presented. This approach is applied for efficiency estimation of all the farms in Terceira Island of the Azorean archipelago.
Resumo:
In the State of Rio Grande do Sul, the municipality of Pelotas is responsible for 90 % of peach production due to its suitable climate and soil conditions. However, there is the need for new studies that aim at improved fruit quality and increased yield. The aim of this study was to evaluate the relationship that exists between soil physical properties and properties in the peach plant in the years 2010 and 2011 by the technique of multivariate canonical correlation. The experiment was conducted in a peach orchard located in the municipality of Morro Redondo, RS, Brazil, where an experimental grid of 101 plants was established. In a trench dug beside each one of the 101 plants, soil samples were collected to determine silt, clay, and sand contents, soil density, total porosity, macroporosity, microporosity, and volumetric water content in the 0.00-0.10 and 0.10-0.20 m layers, as well as the depth of the A horizon. In each plant and in each year, the following properties were assessed: trunk diameter, fruit size and number of fruits per plant, average weight of the fruit per plant, fruit pulp firmness, Brix content, and yield from the orchard. Exploratory analysis of the data was undertaken by descriptive statistics, and the relationships between the physical properties of the soil and of the plant were assessed by canonical correlation analysis. The results showed that the clay and microporosity variables were those that exhibited the highest coefficients of canonical cross-loading with the plant properties in the soil layers assessed, and that the variable of mean weight of the fruit per plant was that which had the highest coefficients of canonical loading within the plant group for the two years assessed.
Resumo:
Background: Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Methods: Normotensive Wistar-Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Results: Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most cardiac remodeling measurements while unsaturated lipid consumption was inversely correlated with these effects. Conclusion: Hypercaloric diet was associated with glycemic metabolism and systolic blood pressure disorders and cardiac remodeling. These effects directly and inversely correlated with saturated and unsaturated lipid consumption, respectively. © 2013 Oliveira Junior et al.; licensee BioMed Central Ltd.