56 resultados para Camphor.
Resumo:
1S,5R,7R)-(-)-10, 10-Dimethyl-3-ethyl-4-oxa--atricyclo[5.2.1.0(1,5)]dec-2-ene 2 was prepared in 95% yield from (1S)-1-amino-2-exo-hydroxyapocamphane 1. The chiral oxazoline could be alkylated (Lhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=31175&stage=core#tDA/THF/-78 degrees C/RX, RX = ethyl, n-propyl, n-butyl iodides or benzyl bromide) to 3 in 95% yield and > 95% diastereoselectivity, and the products hydrolysed to (R)-2-methylalkanoic acids 4 (43-47% yield, 93-98% e.e.). (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Polyaniline is chemically synthesised and doped with camphor sulphonic acid. FTIR studies carried out on these samples indicate that the aromatic rings are retained after polymerisation. The percentage of crystallinity for polyaniline doped with camphor sulphonic acid has been estimated from the X-ray diffraction studies and is around 56% with respect to polyaniline emeraldine base. The change in dielectric permittivity with respect to temperature and frequency is explained on the basis of interfacial polarisation. AC conductivity is evaluated from the observed dielectric permittivity. The values of AC and DC conductivity and activation energy are calculated. The activation energy values suggested that the hopping conduction is the prominent conduction mechanism in this system.
Resumo:
We address the effect of solvation on the lowest electronic excitation energy of camphor. The solvents considered represent a large variation in-solvent polarity. We consider three conceptually different ways of accounting for the solvent using either an implicit, a discrete or an explicit solvation model. The solvatochromic shifts in polar solvents are found to be in good agreement with the experimental data for all three solvent models. However, both the implicit and discrete solvation models are less successful in predicting solvatochromic shifts for solvents of low polarity. The results presented suggest the importance of using explicit solvent molecules in the case of nonpolar solvents. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Thesis (B.S.)--University of Illinois at Urbana-Champaign, 1921.
Resumo:
Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to D-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and D-camphor are C-10 monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 Angstrom resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe2S2 redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.
Resumo:
In recent times, blended polymers have shown a lot of promise in terms of easy processability in different shapes and forms. In the present work, polyaniline emeraldine base (PANi-EB) was doped with camphor sulfonic acid (CSA) and combined with the conducting polymer polyfluorene (PF) as well as the insulating polymer polyvinyl chloride (PVC) to synthesize CSA doped PANi-PF and PANi-PVC blended polymers. It is well known that PANi when doped with CSA becomes highly conducting. However, its poor mechanical properties, such as low tensile, compressive, and flexural strength render PANi a non-ideal material to be processed for its various practical applications, such as electromagnetic shielding, anti-corrosion shielding, photolithography and microelectronic devices etc. Thus the search for polymers which are easily processable and are capable of showing high conductivity still continues. PANi-PVC blend was prepared, which showed low conductivity which is limiting factor for certain applications. Therefore, another processable polymer PF was chosen as conducting matrix. Conducting PF can be easily processed into various shapes and forms. Therefore, a blend mixture was prepared by using PANi and PF through the use of CSA as a counter ion which forms a "bridge" between the two polymeric components of the inter-polymer complex. Two blended polymers have been synthesized and investigated for their conductivity behaviour. It was observed that the blended film of CSA doped PANi-PVC showed a room temperature electrical conductivity of 2.8 × 10-7 S/cm where as the blended film made by CSA doped PANi with conducting polymer PF showed a room temperature conductivity of 1.3 × 10-5 S/cm. Blended films were irradiated with 100 MeV silicon ions with a view to increase their conductivity with a fluence ranging from 1011 ions to 1013 per cm2 from 15 UD Pelletron accelerator at NSC, New Delhi.
Resumo:
We report dietary items of pigeons and doves from northern New South Wales and southern Queensland, obtained from opportunistic sampling of the gut contents of dead birds and observing foraging birds. Most records were from fragmented rainforest habitats, which now support abundant invasive fleshy-fruited plants. The fruits and seeds of invasive plants, particularly Camphor Laurel Cinnamomum camphora, formed the dominant food of several of the species sampled, although in some cases these birds appear to destroy most of the ingested seeds in the gizzard, thereby not contributing to weed dispersal. We also describe the first records of White-headed Pigeons Columba leucomela eating flowers and Brown Cuckoo-Doves Macropygia amboinensis eating flower buds. Camphor Laurel, via flowers, green and ripe fruits, and seeds, provided food for White-headed Pigeons in the Goolmangar district of New South Wales throughout the entire year. Seventy percent of the plant species whose fruits and seeds were recovered from the gut had not previously been recorded as food items for those bird species, illustrating how little is known about the diets of pigeons and doves in fragmented Australian landscapes.
Resumo:
Dielectric studies of the glassy crystalline states of cyclohexanol, cyclohexanone, and camphor obtained by upercooling the plastic crystalline phase demonstrate the presence of characteristic a- and p-relaxations. The parameters of the a-relaxation fit the Vogel-Tammann-Fulcher (VTF) equation. ESR spin-probe studies of the glassy crystalline phase of cyclohexanol show that there is a marked decrease in the correlation time above the glasslike transition temperature. The present studies suggest the similarity between glassy crystals having long-range orientational disorder and glasses which are known to betra nslationally disordered.
Resumo:
A simple effective pyrolysis technique has been developed to synthesize aligned arrays of multi-walled carbon nanotubes (MWCNTs) without using any carrier gas in a single-stage furnace at 700 °C. This technique eliminates nearly the entire complex and expensive machinery associated with other extensively used methods for preparation of CNTs such as chemical vapour deposition (CVD) and pyrolysis. Carbon source materials such as xylene, cyclohexane, camphor, hexane, toluene, pyridine and benzene have been pyrolyzed separately with the catalyst source material ferrocene to obtain aligned arrays of MWCNTs. The synthesized CNTs have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. In this technique, the need for the tedious and time-consuming preparation of metal catalysts and continuously fed carbon source material containing carrier gas can be avoided. This method is a single-step process where not many parameters are required to be monitored in order to prepare aligned MWCNTs. For the production of CNTs, the technique has great advantages such as low cost and easy operation.
Polymerization of pyrrole and processing of the resulting polypyrrole as blends with plasticised PVC
Resumo:
Polypyrrole was synthesized by chemical oxidation of pyrrole in water containing various sulphonic acids like toluene sulphonic acid (TSA), sulphosalicylic acid (SSA), and camphor sulphonic acid (CSA), as well as a combination of each sulphonic acid with sodium dodecyl benzene sulphonate (NaDBS) to investigate the effect of doping on conductivity, yield, and processability of the conducting polymer. Free-standing blend films of polypyrrole and plasticized polyvinyl chloride (PVC) were obtained by casting an homogeneous suspension of the two polymers in tetrahydrofuran. The maximum conductivity of the blend film is similar to 0.3 S/cm, corresponding to a weight fraction of 0.16 w/w polypyrrole. The blend film is semiconducting in the range 300-10 K. A TG-DTA scan indicates the blend film to be amorphous with a stepwise decomposition process similar to pristine PVC. The choice of a dual dopant system during synthesis and the plasticised polymer during subsequent processing were keys to obtaining homogeneous high-quality films. (C) 2001 John Wiley & Sons, Inc.
Resumo:
本论文由四章组成,第一、二、三章为实验论文,分别报道了中药羌活、菊花、全缘叶绿绒蒿的化学成分的高效液相色谱(HPLC)和液相色谱-质谱(LC-MS)联用分析以及挥发油的气相色谱-质谱(GC-MS)联用分析。第四章概述了重要藏药材化学成分的研究进展。 第一章首先对28批不同产地的羌活药材进行了HPLC分析,建立了羌活的指纹图谱。结果表明,不同产地羌活的化学成分基本相似,但是各组分在含量上存在较大差异。其次,对羌活的主要化学组分包括紫花前胡苷、紫花前胡素、6'-O-反式阿魏酸紫花前胡苷、茴香酸对羟基苯乙酯、羌活醇和异欧前胡素进行了定量分析。此外,针对同一产地不同采集时间的羌活挥发油进行系统分析,结果表明它们的化学成分基本相似,主要含有a-蒎烯、b-蒎烯、柠檬烯和龙脑乙酸酯等,只是各组分含量有所变化,这说明采集药材时要注意采集时间。 第二章分别报道了不同产地不同品种菊花非挥发性成分的液相色谱-二极管阵列检测-串联质谱(LC-PDA-MSn)分析和挥发性成分的气相色谱-质谱(GC-MS)联用分析比较。首先通过液相色谱-质谱-串联质谱对各色谱峰进行定性分析,通过与标准品对照,以及UV和MSn提供的结构信息,结合文献报道共鉴定了11个化学成分,包括绿原酸和10个黄酮化合物,并比较了不同品种菊花的化学成分相同之处和不同之处。另外,对七种不同品种不同产地的菊花挥发性成分通过GC-MS分析表明其主要挥发性成分为单萜类、倍半萜类化合物,共有成分樟脑、龙脑和龙脑乙酸酯等,各成分在不同挥发油中的含量变化明显。 第三章为藏药全缘叶绿绒蒿不同部位挥发油成分的气相色谱-质谱(GC-MS)联用分析,比较其挥发油化学成分及其含量变化的异同点。研究结果表明,全缘叶绿绒蒿花精油的化学成分明显多于全草部位,且两者主要成分有较大的差别。 第四章综述了青藏高原重要藏药材化学成分的研究进展。分别对藏药的资源特色和110多种常用重要藏药材的化学成分的研究情况以及藏药未来发展思路进行了阐述,以期对相关的研究提供一些信息。 This dissertation consists of four parts. The first part reports studies on the fingerprint of Notopterygium incisum and N. forbesii by HPLC-PDA-MSn, and on the constitutents of essential oil by GC-MS. The second part elaborates the chemical constitutents of Chrysanthemum L. by LC-MS and GC-MS analysis. The third part reports the chemical compositions of the essential oil from the different parts of Meconopsis integrifolia. The fourth part reviews on the progress of the studies on the chemical constitutents in Tibetan medicines. The first chapter is about HPLC analysis of a traditional Chinese herbal medicine Qiang-huo (Notopterygium incisum and N. forbesii ). Firstly, based on analyzing and contrasting the relative retention time and relative paek area in chromatographic fingerprint, the HPLC chromatographic fingerprint of Notopterygium incisum was established, which can used as a scientific basement for the quality evalution of this herb. Secondly, quantitative analysis were performed on the main chemical constitutents of Notopterygium incisum and N. forbesii including nodakenin, nodakenetin, 6’-O-trans-feruloylnodakenin, p-hydroxypenethylanisate, notopterol and isoimperatorin. The results indicated that the contents were variable related to different growth regions. Lastly, the essential oil of Notopterygium incisum collected in different harvest times is analyzed by GC-MS. The second chapter is about HPLC-MS and GC-MS analysis of several species of Chrysanthemum L. Firstly, eleven compounds including chlorogenic acid and ten flavone compounds were identified in the methanol extract of Chrysanthemum morifolium Ramat. from different regions by HPLC-MS analysis. Secondly, the essential oil of seven different species of Chrysanthemum L.were extracted by steam distillation, and its compositions were isolated and identified by GC-MS. The main active constitutents such as camphor, borneol and bornyl acetate were detected, but the relative content varied notably. The third chapter is about GC-MS analysis of the essential oil from different parts of Meconopsis integrifolia. It indicated great difference of the chemical compositions of their oil in the flowers and residual overground part. The last chapter is a review of the research progress of the Tibetan medicines, which includes their features and their main chemical constitutents.