983 resultados para Camera Pose Estimation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a technique for estimating the 6DOF pose of a PTZ camera by tracking a single moving target in the image with known 3D position. This is useful in situations where it is not practical to measure the camera pose directly. Our application domain is estimating the pose of a PTZ camerso so that it can be used for automated GPS-based tracking and filming of UAV flight trials. We present results which show the technique is able to localize a PTZ after a short vision-tracked flight, and that the estimated pose is sufficiently accurate for the PTZ to then actively track a UAV based on GPS position data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimating of the relative orientation and position of a camera is one of the integral topics in the field of computer vision. The accuracy of a certain Finnish technology company’s traffic sign inventory and localization process can be improved by utilizing the aforementioned concept. The company’s localization process uses video data produced by a vehicle installed camera. The accuracy of estimated traffic sign locations depends on the relative orientation between the camera and the vehicle. This thesis proposes a computer vision based software solution which can estimate a camera’s orientation relative to the movement direction of the vehicle by utilizing video data. The task was solved by using feature-based methods and open source software. When using simulated data sets, the camera orientation estimates had an absolute error of 0.31 degrees on average. The software solution can be integrated to be a part of the traffic sign localization pipeline of the company in question.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NOGUEIRA, Marcelo B. ; MEDEIROS, Adelardo A. D. ; ALSINA, Pablo J. Pose Estimation of a Humanoid Robot Using Images from an Mobile Extern Camera. In: IFAC WORKSHOP ON MULTIVEHICLE SYSTEMS, 2006, Salvador, BA. Anais... Salvador: MVS 2006, 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NOGUEIRA, Marcelo B. ; MEDEIROS, Adelardo A. D. ; ALSINA, Pablo J. Pose Estimation of a Humanoid Robot Using Images from an Mobile Extern Camera. In: IFAC WORKSHOP ON MULTIVEHICLE SYSTEMS, 2006, Salvador, BA. Anais... Salvador: MVS 2006, 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NOGUEIRA, Marcelo B. ; MEDEIROS, Adelardo A. D. ; ALSINA, Pablo J. Pose Estimation of a Humanoid Robot Using Images from an Mobile Extern Camera. In: IFAC WORKSHOP ON MULTIVEHICLE SYSTEMS, 2006, Salvador, BA. Anais... Salvador: MVS 2006, 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the autonomous tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development of a low-cost sensor platform for use in ground-based visual pose estimation and scene mapping tasks. We seek to develop a technical solution using low-cost vision hardware that allows us to accurately estimate robot position for SLAM tasks. We present results from the application of a vision based pose estimation technique to simultaneously determine camera poses and scene structure. The results are generated from a dataset gathered traversing a local road at the St Lucia Campus of the University of Queensland. We show the accuracy of the pose estimation over a 1.6km trajectory in relation to GPS ground truth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi-Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles' state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle's state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle's state for more than one minute, at real-time frame rates based, only on visual information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter¿s position and using the extracted information to control the UAV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new method of using foreground silhouette images for human pose estimation. Labels are introduced to the silhouette images, providing an extra layer of information that can be used in the model fitting process. The pixels in the silhouettes are labelled according to the corresponding body part in the model of the current fit, with the labels propagated into the silhouette of the next frame to be used in the fitting for the next frame. Both single and multi-view implementations are detailed, with results showing performance improvements over only using standard unlabelled silhouettes.