953 resultados para Calorimeters and calorimetry
Resumo:
Adopting square wave excitation to drive induction motors (IMs) can substantially reduce inverter switching losses. However, the low-order time harmonics inherent in the output voltage generates parasitic torques that degrade motor performance and reduce efficiency. In this paper, a novel harmonic elimination modulation technique with full voltage control is studied as an interesting and alternative means of operating small (<1kW) IM drives efficiently. A fully verified harmonic elimination scheme, which removes the 5th, 7th, 11th, 13th and 17 th time harmonics, was implemented and applied to an IGBT driven IM. The power losses incurred in the inverter and the IM as a result of the switching scheme have been determined. © 2008 Crown copyright.
Resumo:
Combined with the national standard biomonitoring method (polyurethane foam units method), calorimetry was applied to study the metabolic activities of PFU microbial communities in fresh water to determine the effects of anthropotgenic stresses on the activity of the microbial community. Comparisons were made at four sampling stations with different eutrophic status in Lake Donghu. Water quality variables, species number of protozoa, abundances of microorganisms, biomass, heterotrophy indexes and diversity indexes are reported. The heat rate-time curves of the native and concentrated PFU microbial communities were determined at 28 degrees C. Growth rate, measured maximum power output and total heat were calculated from the heat rate-time curves. The values of metabolic variables are higher at the more eutrophic stations, which suggests that organic pollution increases the activity of PFU microbial communities. The metabolic variables are in good agreement with chemical and biotic variables. And calorimetry will be useful for biomonitoring of the PFU microbial community. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Dynamic light scattering (DLS), time-resolved fluorescence quenching (TRFQ), and isothermal titration microcalorimetry have been used to show that, in dilute solution, low molecular weight poly(ethylene glycol) (PEG, M-w = 12 kDa) interacts with the nonionic surfactant octaethylene glycol n-dodecyl monoether, C12E8, to form a complex. Whereas the relaxation time distributions for the binary C12E8/water and PEG/water systems are unimodal, in the ternary mixtures they may be either uni- or bimodal depending on the relative concentrations of the components. At low concentrations of PEG or surfactant, the components of the relaxation time distribution are unresolvable, but the distribution becomes bimodal at higher concentrations of either polymer or surfactant. For the ternary system in excess surfactant, we ascribe, on the basis of the changes in apparent hydrodynamic radii and the scattered intensities, the fast mode to a single micelle, the surface of which is associated with the polymer and the slow mode to a similar complex but containing two or three micelles per PEG chain. Titration microcalorimetry results show that the interaction between C12E8, and PEG is exothermic and about 1 kJ mol(-1) at concentrations higher than the CMC of C12E8. The aggregation number, obtained by TRFQ, is roughly constant when either the PEG or the C12E8 concentration is increased at a given concentration of the second component, owing to the increasing amount of surfactant micelles inside the complex.
Resumo:
Con la evaluación de la producción de pintura a partir de los residuos de poliestireno expandido (EPS) utilizando un solvente amigable con el ambiente, se pretende dar uso post industrial a los desechos de poliestireno expandido que cada vez se acumulan más en los rellenos sanitarios, lo que genera un descontento debido a su volumen -- Además de darle un trato más amigable a la fabricación de pintura buscando un solvente que no resulte tan tóxico para el trato humano y para el ambiente -- El desarrollo del proyecto se lleva a cabo planteando una metodología de investigación que sugiere inicialmente pruebas de caracterización al residuo de poliestireno expandido, que permiten saber características propias del material -- Luego de esto, se realiza un diseño de experimentos multifactorial con dos factores y tres niveles, donde se analiza el efecto de la temperatura en la fase de mezclado y la relación que tiene la concentración de poliestireno expandido como vehículo en la elaboración de pintura -- En el diseño se evalúan cuatro variables de respuesta: adhesión, viscosidad, tiempo de secado y poder de cubrimiento, comparando luego estas mismas propiedades con las realizadas en una pintura comercial -- El estudio muestra un alto grado de influencia de la concentración de poliestireno expandido sobre las propiedades de la pintura obtenida, mejorando cada una de ellas a medida que se aumenta la cantidad de poliestireno expandido -- Se observó también que la temperatura influyó en el tiempo de secado, es decir a mayor temperatura en la fase de mezclado mayor fue el tiempo que se demoró la pintura en secar -- Por último, al comparar el producto obtenido con uno comercial, se encuentra que el producto obtenido tiene menor tiempo de secado, una adhesión similar, posee mayor poder de cobertura y una viscosidad más alta, además de ser una pintura no toxica y amigable con el ambiente
Resumo:
Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.
Resumo:
High resolution thermogravimetry has been used to evaluate the carbonaceous content in a commercial sample of single-walled carbon nanotube (SWNT). The content of SWNTs in the sample was found to be at least 77mass% which was supported by images obtained with scanning and transmission electron microscopies (SEM and TEM). Furthermore, the influence of SWNT addition on the thermal stability of graphite in mixtures of SWNT/graphite at different proportions was investigated. The graphite stability decreased with the increased of SWNT content in the overall range of composition. This behavior could be due to the close contact between these carbonaceous species as determined by SEM analysis.
Resumo:
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.
Resumo:
The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.
Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni,Co)6Fe2(OH)16(CO3)•4H2O
Resumo:
The mineral reevesite and the cobalt substituted reevesite have been synthesised. The d(003) spacings of the minerals ranged from 7.54 to 7.95 Å. The maximum d(003) value occurred at around Ni:Co 0.4:0.6. This maximum in interlayer distance is proposed to be due to a greater number of carbonate anions and water molecules intercalated into the structure. The stability of the reevesite and cobalt doped reevesite was determined by thermogravimetric analysis. The maximum temperature of the reevesite occurs for the unsubstituted reevesite and is around 220°C. The effect of cobalt substitution results in a decrease in thermal stability of the reevesites. Four thermal decomposition steps are observed and are attributed to dehydration, dehydroxylation and decarbonation, decomposition of the formed carbonate and oxygen loss at ~807 °C. A mechanism for the thermal decomposition of the reevesite and the cobalt substituted reevesite is proposed.
Resumo:
The hydrotalcite based upon manganese known as charmarite Mn4Al2(OH)12CO3•3H2O has been synthesised with different Mn/Al ratios from 4:1 to 2:1. Impurities of manganese oxide, rhodochrosite and bayerite at low concentrations were also produced during the synthesis. The thermal stability of charmarite was investigated using thermogravimetry. The manganese hydrotalcite decomposed in stages with mass loss steps at 211, 305 and 793°C. The product of the thermal decomposition was amorphous material mixed with manganese oxide. A comparison is made with the thermal decomposition of the Mg/Al hydrotalcite. It is concluded that the synthetic charmarite is slightly less stable than hydrotalcite.
Resumo:
Dynamic and controlled rate thermal analysis (CRTA) has been used to characterise alunites of formula [M(Al)3(SO4)2(OH)6 ] where M+ is the cations K+, Na+ or NH4+. Thermal decomposition occurs in a series of steps. (a) dehydration, (b) well defined dehydroxylation and (c) desulphation. CRTA offers a better resolution and a more detailed interpretation of water formation processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of water formation reveal the subtle nature of dehydration and dehydroxylation.
Resumo:
Insight into the unique structure of layered double hydroxides has been obtained using a combination of X-ray diffraction and thermal analysis. Indium containing hydrotalcites of formula Mg4In2(CO3)(OH)12•4H2O (2:1 In-LDH) through to Mg8In2(CO3)(OH)18•4H2O (4:1 In-LDH) with variation in the Mg:In ratio have been successfully synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium containing layered double hydroxide. Distinct mass loss steps attributed to dehydration, dehydroxylation and decarbonation are observed for the indium containing hydrotalcite. Dehydration occurs over the temperature range ambient to 205 °C. Dehydroxylation takes place in a series of steps over the 238 to 277 °C temperature range. Decarbonation occurs between 763 and 795 °C. The dehydroxylation and decarbonation steps depend upon the Mg:In ratio. The formation of indium containing hydrotalcites and their thermal activation provides a method for the synthesis of indium oxide based catalysts.
Resumo:
The thermal behavior and decomposition of kaolinite-potassium acetate intercalation complex was investigated through a combination of thermogravimetric analysis and infrared emission spectroscopy. Three main changes were observed at 48, 280, 323 and 460 °C which were attributed to (a) the loss of adsorbed water (b) loss of the water coordinated to acetate ion in the layer of kaolinite (c) loss of potassium acetate in the complex and (d) water through dehydroxylation. It is proposed that the KAc intercalation complex is stability except heating at above 300 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the kaolinite intercalation complex when the temperature is raised. The dehydration of the intercalation complex is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration is completed by 400 °C and partial dehydroxylation by 650 °C. The inner hydroxyl group remained until around 700 °C.