978 resultados para Callus distraction, Mechano-biology, Tissue strain, Bone formation, Intra-membranous ossification


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacterial infection remains a significant problem following total joint replacement. Efforts to prevent recurrent implant infection, including the use of antibiotic-loaded bone cement for implant fixation at the time of revision surgery, are not always successful. In this in vitro study, we investigated whether the addition of chitosan to gentamicin-loaded Palacos® R bone cement increased antibiotic release and prevented bacterial adherence and biofilm formation by Staphylococcus spp. clinical isolates. Furthermore, mechanical tests were performed as a function of time post-polymerisation in pseudo-physiological conditions. The addition of chitosan to gentamicin-loaded Palacos® R bone cement significantly decreased gentamicin release and did not increase the efficacy of the bone cement at preventing bacterial colonisation and biofilm formation. Moreover, the mechanical performance of cement containing chitosan was significantly reduced after 28 days of saline degradation with the compressive and bending strengths not in compliance with the minimum requirements as stipulated by the ISO standard for PMMA bone cement. Therefore, incorporating chitosan into gentamicin-loaded Palacos® R bone cement for use in revision surgery has no clinical antimicrobial benefit and the detrimental effect on mechanical properties could adversely affect the longevity of the prosthetic joint.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Infection remains a severe complication following a total hip replacement. If infection is suspected when revision surgery is being performed, additional gentamicin is often added to the cement on an ad hoc basis in an attempt to reduce the risk of recurrent infection.

Methods and results: In this in vitro study, we determined the effect of incorporating additional gentamicin on the mechanical properties of cement. We also determined the degree of gentamicin release from cement, and also the extent to which biofilms of clinical Staphylococcus spp. isolates form on cement in vitro. When gentamicin was added to unloaded cement (1–4 g), there was a significant reduction in the mechanical performance of the loaded cements compared to unloaded cement. A significant increase in gentamicin release from the cement over 72 h was apparent, with the amount of gentamicin released increasing significantly with each additional 1 g of gentamicin added. When overt infection was modeled, the incorporation of additional gentamicin did result in an initial reduction in bacterial colonization, but this beneficial effect was no longer apparent by 72 h, with the clinical strains forming biofilms on the cements despite the release of high levels of gentamicin.

Interpretation: Our findings indicate that the addition of large amounts of gentamicin to cement is unlikely to eradicate bacteria present as a result of an overt infection of an existing implant, and could result in failure of the prosthetic joint because of a reduction in mechanical performance of the bone cement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Toluene- and naphthalene-dioxygenase-catalysed sulfoxidation of nine disubstituted methylphenyl sulfides, using whole cells of Pseudomonas putida, consistently gave the corresponding enantioenriched sulfoxides. Using the P. putida UV4 mutant strain, and these substrates, differing proportions of the corresponding cis-dihydrodiol sulfides were also isolated. Evidence was found for the concomitant dioxygenase-catalysed cis-dihydroxylation and sulfoxidation of methyl paratolyl sulfide. A simultaneous stereoselective reductase-catalysed deoxygenation of (S)-methyl para-tolyl sulfoxide, led to an increase in the proportion of the corresponding cis-dihydrodiol sulfide. The enantiopurity values and absolute configurations of the corresponding cis-dihydrodiol metabolites from methyl ortho-and para-substituted phenyl sulfides were determined by different methods, including chemoenzymatic syntheses from the cis-dihydrodiol metabolites of para-substituted iodobenzenes. Further evidence was provided to support the validity of an empirical model to predict, (i) the stereochemistry of cis-dihydroxylation of para-substituted benzene substrates, and (ii) the regiochemistry of cis-dihydroxylation reactions of ortho-substituted benzenes, each using toluene dioxygenase as biocatalyst.