6 resultados para Callimico
Resumo:
The aim of this study was to evaluate the incidence of pleiomorphisms and its influence on the distribution of sperm morphometric subpopulations in ejaculates from the vulnerable Goeldi's monkey (Callimico goeldii) by using a combination of computerized analysis system and Principal Component Analysis (PCA) methods Each sperm head was measured for four primary spermatozoal head dimensional parameters (area [A (μm2)], perimeter [P (μm)], length [L (μm)] and width [W (μm)]) and three head shape derived parameters (ellipticity [(L/W)], elongation [(L-W)/(L+W)] and rugosity [(4πA/P2)]) Six separate subpopulations (SPs) were identified: SP1, constituted by very large, narrow and very elliptical spermatozoa (A=16.85±1.56μm2, W=2.75±0.42μm and ellipticity=2.16±0.24); SP2, characterized by average sized, short, wide and round spermatozoa (A=15.00±1.92μm2, L=5.06±0.49μm, W=3.51±0.31μm and ellipticity=1.44±0.15); SP3, represented by small, wide and slightly round spermatozoa (A=14.95±1.75μm2, W=3.47±0.29μm and ellipticity=1.48±0.14); SP4 included very small, short and very round spermatozoa (A=14.15±2.38μm2, L=4.90±0.57μm and elongation=0.18±0.05); SP5 consisted of average sized and slightly elliptical spermatozoa (A=15.14±1.72μm2 and ellipticity=1.49±0.14); and SP6 included large and round spermatozoa (A=16.30±1.62μm2 and elongation=0.19±0.04) There were differences in the sperm subpopulation distribution (P<0.001) among the five donors analyzed In conclusion, the results of the current study confirmed that the use of computer sperm analysis methods combined with PCA cluster analyses are useful methods to identify, classify, and characterize different sperm head morphometric subpopulations in neotropical primates Broadening our knowledge of C goeldii sperm morphometric abnormalities as well as developing reliable techniques for sperm evaluation may be essential for ex situ conservation of this threatened species © 2012 Elsevier B.V.
Resumo:
In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus, Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62). The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates.
Resumo:
This study examined the susceptibility of peritoneal macrophage (PM) from the Neotropical primates: Callithrix jacchus, Callithrix penicillata, Saimiri sciureus, Aotus azarae infulatus and Callimico goeldii to ex vivo Leishmania (L.) infantum chagasi-infection, the etiological agent of American visceral leishmaniasis (AVL), as a screening assay for evaluating the potential of these non-human primates as experimental models for studying AVL. The PM-susceptibility to infection was accessed by the PM-infection index (PMI) at 24, 72 h and by the mean of these rates (FPMI), as well as by the TNF-α, IL-12 (Capture ELISA) and Nitric oxide (NO) responses (Griess method). At 24h, the PMI of A. azarae infulatus (128) was higher than those of C. penicillata (83), C. goeldii (78), S. sciureus (77) and C. jacchus (55). At 72h, there was a significant PMI decrease in four monkeys: A. azarae infulatus (128/37), C. penicillata (83/38), S. sciureus (77/38) and C. jacchus (55/12), with exception of C. goeldii (78/54). The FPMI of A. azarae infulatus (82.5) and C. goeldii (66) were higher than C. jacchus (33.5), but not higher than those of C. penicillata (60.5) and S. sciureus (57.5). The TNF-a response was more regular in those four primates which decreased their PMI at 24/72 h: C. jacchus (145/122 pg/mL), C. penicillata (154/130 pg/mL), S. sciureus (164/104 pg/mL) and A. azarae infulatus (154/104 pg/mL), with exception of C. goeldii (38/83 pg/mL). The IL-12 response was mainly prominent in A. infulatus and C. goeldii which presented the highest FPMI and, the NO response was higher in C. goeldii, mainly at 72 h. These findings strongly suggest that these New World primates have developed a resistant innate immune response mechanism capable of controlling the macrophage intracellular growth of L. (L.) i. chagasi-infection, which do not encourage their use as animal model for studying AVL.
Resumo:
Four DNA datasets were combined in tandem (6700 bp) and Maximum parsimony and Neighbor-Joining analyses were performed. The results suggest three groups emerging almost at the same time: Atelidae, Pitheciidae and Cebidae. The total analysis strongly supports the monophyly of the Cebidae family, grouping Aotus, Cebus and Saimiri with the small callitrichines. In the callitrichines, the data link Cebuela to Callithrix, place Callimico as a sister group of Callithrix/Cebuella, and show Saguinus to be the earliest offshoot of the callitrichines. In the family Pithecidae, Callicebus is the basal genus. Finally, combined molecular data showed congruent branching in the atelid clade, setting up Alouatta as the basal lineage and Brachyteles-Lagothrix as a sister group and the most derived branch. Two major points remain to be clarified in the platyrrhine phylogeny: (i) what is the exact branching pattern of Aotus, Cebus, Saimiri and the small callitrichines, and (ii), which two of these three lineages, pitheciines, atelines or cebids, are more closely related?
Resumo:
Este estudo examinou a susceptibilidade do macrófago peritoneal (PM) dos primatas neotropicais: Callithrix jacchus, Callithrix penicillata, Saimiri sciureus, Aotus azarae infulatus e Callimico goeldii para a infecção ex vivo por Leishmania (L.) infantum chagasi, o agente etiológico da leishmaniose visceral americana (LVA), como método de triagem para avaliar o potencial desses primatas como modelo de estudo da LVA. A susceptibilidade do PM para a infecção foi investigada através do índice de infecção do PM (PMI) a intervalos de 24, 72 horas e, ainda, pela média dessas taxas (FPMI), assim como, pelas respostas do TNF-α, IL-2 (ELISA de captura) e óxido nítrico (NO) (método de Griess). Às 24hs da infecção experimental, o PMI do primata A. azarae infulatus (128) foi maior que aqueles de C. penicillata (83), C. goeldii (78), S. sciureus (77) e C. jacchus (55). Às 72hs, houve uma redução significativa do PMI de quatro primatas: A. azarae infulatus (128/37), C. penicillata (83/38), S. sciureus (77/38) e C. jacchus (55/12), com exceção de C. goeldii (78/54). O FPMI dos primatas A. azarae infulatus (82.5) e C. goeldii (66) foi maior que do primata C. jacchus (33.5), porém, não foi maior que dos primatas C. penicillata (60.5) e S. sciureus (57.5). A resposta do TNF-α foi mais regular nos quatro primatas que reduziram o PMI no intervalo de 24-72hs: C. jacchus (145/122 pg/µL), C. penicillata (154/130 pg/µL), S. sciureus (164/104 pg/µL) e A. azarae infulatus (154/104 pg/µL), com exceção de C. goeldii (38/83 pg/µL). A resposta de IL-12 foi, principalmente, marcante nos primatas A. azarae infulatus e C. goeldii, os quais apresentaram as maiores taxas do FPMI, e a resposta do NO foi maior no primata C. goeldii, em especial no intervalo de 72hs. Estes achados sugerem, fortemente, que estes primatas neotropicais parecem ter desenvolvido mecanismos resistentes de resposta imune inata capaz de controlar o crescimento intracelular da infecção por L. (L.) i. chagasi no macrófago, o que não encoraja o uso destes primatas como modelo de estudo da LVA.