950 resultados para Calculus of variations
Nonuniqueness in vector-valued calculus of variations in l-infinity and some linear elliptic systems
Resumo:
This dissertation concerns convergence analysis for nonparametric problems in the calculus of variations and sufficient conditions for weak local minimizer of a functional for both nonparametric and parametric problems. Newton's method in infinite-dimensional space is proved to be well-defined and converges quadratically to a weak local minimizer of a functional subject to certain boundary conditions. Sufficient conditions for global converges are proposed and a well-defined algorithm based on those conditions is presented and proved to converge. Finite element discretization is employed to achieve an implementable line-search-based quasi-Newton algorithm and a proof of convergence of the discretization of the algorithm is included. This work also proposes sufficient conditions for weak local minimizer without using the language of conjugate points. The form of new conditions is consistent with the ones in finite-dimensional case. It is believed that the new form of sufficient conditions will lead to simpler approaches to verify an extremal as local minimizer for well-known problems in calculus of variations.
Resumo:
In this paper, calculus of variations and combined blade element and momentum theory (BEMT) are used to demonstrate that, in hover, when neither root nor tip losses are considered; the rotor, which minimizes the total power (MPR), generates an induced velocity that varies linearly along the blade span. The angle of attack of every blade element is constant and equal to its optimum value. The traditional ideal twist (ITR) and optimum (OR) rotors are revisited in the context of this variational framework. Two more optimum rotors are obtained considering root and tip losses, the ORL, and the MPRL. A comparison between these five rotors is presented and discussed. The MPR and MPRL present a remarkable saving of power for low values of both thrust coefficient and maximum aerodynamic efficiency. The result obtained can be exploited to improve the aerodynamic behaviour of rotary wing micro air vehicles (MAV). A comparison with experimental results obtained from the literature is presented.
Resumo:
Reproduced from typewritten copy.
Resumo:
Bibliography: leaf 169.
Resumo:
Reproduced from type-written copy.
Resumo:
Mode of access: Internet.
Resumo:
Reproduced from type-written copy.
Resumo:
Mode of access: Internet.
Resumo:
First issued in 25 parts, July 15, 1836, to June 1, 1842.
Resumo:
Vol. 3 and 4 form the author's Treatise on analytical mechanics.
Resumo:
MSC 2010: 49K05, 26A33
Resumo:
Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.
Resumo:
Carbonation is one of the main concerns for concrete service life in tropical countries. The mechanism and materials that produce it have been widely studied as well as natural and accelerated methods to report and analyze it. In spite of reported investigations, there is a need for information that could allow an adequate interpretation of the results of the standardization process. This lack of information can produce variations not only in the interpretation but also in the predictions of service life. The purpose of this paper is to analyze and discuss variables that could be sources of error, especially when performing accelerated tests. As a result, a methodologies to minimize variations when interpreting and comparing results is proposed, such as specimen geometry and preconditioning, spacing, relative humidity, and CO(2) concentration.