998 resultados para Calcium sources
Resumo:
Sinoaortic denervation is characterized by arterial pressure lability, without sustained hypertension. Aortas isolated from rats with sinoaortic denervation present rhythmic contractions. We studied the participation of distinct Ca2+ sources in the maintenance of the oscillations. Three days after the surgeries, aortic rings were placed in an organ chamber, and the incidence of aortas presenting rhythmic contractions was measured. Specific drugs were employed to analyse the participation of the Ca2+ released from the sarcoplasmic reticulum [2-APB (diphenylborinic acid 2-aminoethyl ester), thapsigargin and ryanodine] and external Ca2+ entry [Bay K 8644, verapamil and DMB (dimethylbenzyl amiloride)] on the rhythmic contractions. Additionally, we verified the effects of chloride channel blocker NPPB [5-nitro-2-(3-phenylpropylamino)benzoic acid] on the maintenance of the rhythmic contractions. Under phenylephrine stimulus, sinoaortic-denervated rat aortas exhibited rhythmic contractions in the frequency of 4.5 +/- 0.50 cycles/min. and an amplitude of 0.465 +/- 0.05 g. 2-APB, thapsigargin and ryanodine inhibited the rhythmic contractions. Bay K 8644 increased the oscillations, reaching maximum values with a concentration of 50 nM (18.5 +/- 2.5 cycles/min.). The rhythmic contractions were inhibiting by verapamil and Ca2+-free solution. DMB and NPPB did not alter the oscillations. In conclusion, we observed that aorta isolated from sinoaortic-denervated rats present rhythmic contractions. Moreover, drugs that impaired intracellular Ca2+ release from sarcoplasmic reticulum interrupted the oscillations. The oscillations also depend on the extracellular Ca2+ entry through L-type Ca2+.
Resumo:
Sodium alginate needs the presence of calcium ions to gelify. For this reason, the contribution of the calcium source in a fish muscle mince added by sodium alginate, makes gelification possible, resulting a restructured fish product. The three different calcium sources considered were: Calcium Chloride (CC); Calcium Caseinate (CCa); and Calcium lactate (CLa). Several physical properties were analyzed, including mechanical properties, colour and cooking loss. Response Surface Methodology (RSM) was used to determine the contribution of different calcium sources to a restructured fish muscle. The calcium source that modifies the system the most is CC. A combination of CC and sodium alginate weakened mechanical properties as reflected in the negative linear contribution of sodium alginate. Moreover, CC by itself increased lightness and cooking loss. The mechanical properties of restructured fish muscle elaborated were enhanced by using CCa and sodium alginate, as reflected in the negative linear contribution of sodium alginate. Also, CCa increased cooking loss. The role of CLa combined with sodium alginate was not so pronounced in the system discussed here.
Resumo:
This research aimed to develop tortilla chips (TC) high in antioxidants from extruded and nixtamalized blue corn flours prepared with calcium hydroxide Ca(OH)2 and calcium lactate C6H10O6Ca. Tortilla chips were made with extruded flours [0.1% Ca(OH)2; 0.9% C6H10O6Ca; without calcium] and nixtamalized flours [1% Ca(OH)2; 2.95% C6H10O6Ca] using the frying process. Total anthocyanin, total phenolics content, antioxidant activity, color, texture, and oil content were determined. The color of tortilla chips from extruded flours (TCEF) showed high values of the parameters a* and b* indicating a reduction in the blue color. These color parameters were significantly different from those observed in tortilla chips from nixtamalized flours (TCNF), which tended to be more blue. The TCEF retained 15% anthocyanins, 34% phenolics, and 54% antioxidant activity. Pearson's correlation analysis indicated that anthocyanins and phenolics correlated significantly with antioxidant activity and color. TCEF with both calcium sources showed higher fracturability compared with that of TCNF. Oil absorption showed an opposite effect, with lower oil content in TCEF. Nixtamalization and extrusion with C6H10O6Ca resulted in flours and TC high in anthocyanins and antioxidant activity, representing an alternative production process for corn snack high in antioxidants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.
Resumo:
The present study evaluated the effect of artificial oocyte activation (AOA) with calcium ionophore A23187 oil intracytoplasmic sperm injection (ICSI) cycles using spermatozoa from different sources. The 314 cycles evaluated were divided into three groups according to sperm origin, the ejaculated group (n = 92), the epididymal group (n = 82). and the testicular roup (n = 140). Each group was further split into experimental subgroups, depending oil whether or no AOA was performed. In additions the cycles of women younger than 36 years were evaluated separately. For each experimental group, ICSI outcomes were compared between subgroups. No significant difference was observed between subgroups for all sperm origin groups. When evaluating only the cycles of women younger than 36 years of age, AOA increased the percentage of high-quality embryos (74.5 versus 53.0%. P = 0.011) and the implantation rate (19.3 versus 10.5%, P = 0.0025) when it was used with ejaculated spermatozoa, and the percentage of high-quality embryos (64.4 versus 50.3%, P = 0.006) when epididymal spermatozoa were used. These results may suggest that both sperm maturity and oocyte quality play a role in oocyte activation. However. this study is to be continued to confirm these findings.
Resumo:
To determine the association of food sources of calcium with weight class in adolescent girls, the major food sources of calcium were determined for 718 sixth grade girls at three different time periods during an 18 month school-based health intervention program using a FFQ. To determine weight class, the BMI of each girl was stratified using CDC age and gender specific criteria at each time period. The percent contribution of the major food sources of calcium to total calcium intake was compared among the different weight classes at each time period, among those girls who had changed weight class at the different time periods and for those girls who did not change weight class at the different time periods. The mean total calcium intake increased by 20% between the first two time periods and by 12% between the first and last time periods with the intervention despite baseline total calcium intake already being greater than the recommended 1300 mg/day. The percent contribution of the major food sources of calcium were highly correlated among the weight classes that were compared throughout the study. Those girls who remained in the normal weight class throughout the study had the most consistent intake of food sources of calcium. Their top four food sources of calcium were different types of milk which provided greater than 50% of their total calcium intake. Despite there being no significant differences in the major food sources of calcium among the different weight classes, these data show a successful intervention for increasing calcium intake among adolescent girls. ^
Resumo:
Background: Adequate calcium intake may have a crucial role with regards to prevention of many chronic diseases, including hypertension, hypercholesterolemia, different types of cancer, obesity and osteoporosis. In children, sufficient calcium intake is especially important to support the accelerated growth spurt during the preteen and teenage years and to increase bone mineral mass to lay the foundation for older age. Objectives: This study aimed to assess daily calcium intake in school-age children to ensure whether they fulfill the FGP dairy serving recommendations, the recommended levels of daily calcium intake and to assess the relationship between dietary calcium intake and major bone health indicators. Patients and Methods: A total of 501 Iranian school-age children were randomly selected. Calcium intake was assessed using a semi-quantitative food frequency questionnaire. Bone health indicators were also assessed. Results: Dairy products contributed to 69.3% of the total calcium intake of the children. Daily adequate intake of calcium was achieved by 17.8% of children. Only 29.8% met the Food guide pyramid recommendations for dairy intake. Dietary calcium intake was not significantly correlated with serum calcium and other selected biochemical indicators of bone health. Conclusions: The need for planning appropriate nutrition strategies for overcoming inadequate calcium intake in school age children in the city of Tehran is inevitable.
Resumo:
The aim of the current study was to describe the sources of variation of energy and nutrient intake and to calculate the number of repetitions of diet measurements to estimate usual intake in adolescents from São Paulo, Brazil. Data was collected using 24-hour dietary recalls (24hR) in 273 adolescents between 2007 and 2008. Individuals completed a repeat 24hR around two months later. The sources of variation were estimated using the random effect model. Variance ratios (within-person to between-person variance ratio) and the number of repetitions of 24hR to estimate usual intake were calculated. The principal source of variation was due to within-person variance. The contribution of day of week and month of year was less than 8%. Variations ranged from 1.15 for calcium to 7.31 for vitamin E. The number of 24hR repeats required to estimate usual intake varied according to nutrient and gender, numbering 15 for males and 8 for females.
Resumo:
The objective of this study was to evaluate the use of fat sources in rations for lactating cows on the productive performance and composition of milk protein fraction. Twelve Holstein cows were used, grouped in three balanced 4 × 4 Latin squares, fed with the following rations: control; refined soybean oil; whole raw soybean; and calcium salts of unsaturated fatty acid (Megalac-E). Dry matter and nutrient intake, and daily milk production were evaluated. The samples used to analyze milk composition were collected in two alternate days and were obtained from two daily milking. Milk composition and total nitrogen, non-protein nitrogen and non-casein nitrogen ratios were analyzed. The casein, serum protein and true protein ratios were obtained by difference. Dry matter and nutrient intakes were lower when cows received the diet containing calcium salts of fatty acids, in relation to the control diet. Among the diets with fat sources, the one with whole raw soybean and calcium salts decreased milk production. There was no effect of fat sources added to the diet on crude protein, non-protein nitrogen, non-casein nitrogen, true protein, casein, casein/milk true protein ratio and serum protein. Similarly, the experimental diets did not influence the protein fractions when expressed in percentage of milk crude protein. The utilization of fat sources in diets changes milk production and composition of lactating cows, but does not influence the composition of milk protein fractions.
Resumo:
A trial was carried out on an eight old coffee plantation with visible zinc problems. The plantation was situated nearly the city of Jaú (22º30'S, 48º30'W). State of São Paulo, Brazil. The soil is classified as medium texture Oxisol of low base saturation (Latossol Vermelho Amarelo - fase arenosa). The pulverization program started in november 1977, followed in march and July 1978 (heavy harvest) and ended in march and July 1979 (light harvest). Is should be mentioned that a well reconized characteristic of arábica coffe is its habit of biennial bearing, a very heavy harvest is most often followed by a light load the next year. The following treatments and amounts of chemicals per cova hole (4 trees) were tested in accordance with a random block design: 1. 1 g of zinc (zinc sulphate, 0.5%) 2. 3 g of nitrogen (urea, 1.3%) 3. 1 g of zinc + 3 g of nitrogen (zinc sulphate 0.5% + urea 1.3%) 4. 0.25 g, 0.50 g, 1.00 g, 2.00 g of zinc plus 0.75 g, 1.50 g, 3.00 g and 6.00 of nitrogen (correspondent to NZN* 15-0-0-5 as 0.75%, 1-5%, 3.0% and 6.0% by v/v). Foliar absorption data were obtained by collecting the 3rd and 4th pairs of the coffee leaves and analysed them for N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn. The main results may be summarized as follows: 1. The maximum calculated yields of clean coffee were obtained by the applications of 5.84 1 of NZN (1.13%) per hectare. 2. The applications of zinc sulphate (0.5%) and urea (1.3%) together or separate did not affected the coffee bean production. 3. The applications of 15.0 1 of NZN per hectare reduced the coffee yields. 4. Leaf damages and burning symptoms were observed by the applications of urea (1.3%) plus zinc sulphate (0.5%) and larger doses than 7.5 1 of NZN per hectare. 5. Leaf tissue analysis show that the concentrations of the elements were affecred by the age of the leaves and by the yields of the coffee trees. 6. The applications of increasing doses of NZN causes an increase in the concentration of zinc, manganese and boron in the leaves and decreased the concentration in calcium and potassium the leaves. 7. The concentration of zinc in the leaves associated with the heavy harvest, in July, was 70.0 ppm.
Resumo:
BACKGROUND Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses. METHODOLOGY/PRINCIPAL FINDINGS We identified nutrient patterns from food frequency questionnaires (FFQ) in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and used 24-hour dietary recall (24-HDR) data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA) was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312). Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436) provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC) 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores. CONCLUSION/SIGNIFICANCE The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs in term of food sources. These outcomes open research opportunities and perspectives of using nutrient patterns in future studies particularly at international level.
Resumo:
The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.
Resumo:
Estrogens have been demonstrated to rapidly modulate calcium levels in a variety of cell types. However, the significance of estrogen-mediated calcium flux in neuronal cells is largely unknown. The relative importance of intra- and extracellular sources of calcium in estrogenic effects on neurons is also not well understood. Previously, we have demonstrated that membrane-limited estrogens, such as E-BSA given before an administration of a 2-hour pulse of 17beta-estradiol (E(2)), can potentiate the transcription mediated by E(2) from a consensus estrogen response element (ERE)-driven reporter gene. Inhibitors to signal transduction cascades given along with E-BSA or E(2) demonstrated that calcium flux is important for E-BSA-mediated potentiation of transcription in a transiently transfected neuroblastoma cell line. In this report, we have used inhibitors to different voltage-gated calcium channels (VGCCs) and to intracellular store receptors along with E-BSA in the first pulse or with E(2) in the second pulse to investigate the relative importance of these channels to estrogen-mediated transcription. Neither L- nor P-type VGCCs seem to play a role in estrogen action in these cells; while N-type VGCCs are important in both the non-genomic and genomic modes of estrogen action. Specific inhibitors also showed that the ryanodine receptor and the inositol trisphosphate receptor are important to E-BSA-mediated transcriptional potentiation. This report provides evidence that while intracellular stores of calcium are required to couple non-genomic actions of estrogen initiated at the membrane to transcription in the nucleus, extracellular sources of calcium are also important in both non-genomic and genomic actions of estrogens. Copyright (c) 2005 S. Karger AG, Basel.