1000 resultados para Calcium alloys


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bioceramics with different Ca/P ratio were prepared from a mechanical mixture of NaPO3, CaCO3, Ca(OH)2 and phosphate buffer solution and implanted in rats subcutaneous tissues. The cements were characterized by Thermo gravimetric analysis (TG-TDA), X-ray diffraction and 31P-NMR. The implant sites were excised after 1, 4 and 16 weeks, fixed, dehydrated, included in paraffin wax for serial cutting and examined under the light transmitted microscope. They were biocompatible and biodegradable when implanted in rat subcutaneous. None of the materials induced ectopic osteogenesis. According to the results, the studied materials seem to be able for manufacturing reabsorbable bone implants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tie lines delineating equilibria between different oxides of the Ca-Al-O system and liquid Ca-Al alloy has been determined at 1373 K. Equilibration of the alloy with two adjacent oxide phases in the CaO-Al2O3 pseudo-binary system was established in a closed cell made of iron. Equilibrium oxide phases were confirmed by x-ray analysis and alloy compositions were determined by chemical analysis. The compound 12CaO.7Al2O3 Ca12Al14O33 was found to be a stable phase in equilibrium with calcium alloys. The experimental diagram is consistent with that calculated from the free energies of formation of the oxide phases and activities in liquid Ca-Al alloys at 1373 K reported in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deposits formed on the surface of. paper were analysed in order to identify the sources of the defects, as well as to solve the problems associated with performance and adjustments at the wet end of the paper forming process. Standard paper samples containing deposits were collected and analysed by comparing the microstructure and composition of the deposit with paper regions adjacent to it. Optical microscopy (OM). energy dispersive X-ray microanalysis (EDX) X-ray powder diffraction (XRD). thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were the techniques used in this study. The results obtained from the EDX, XRD. and TG techniques allowed concluding that the calcium carbonate content in the farm of calcite is 1.6 times higher in the formed deposit them the quantity expected in the standard paper composition. The paper sample microstructure revealed by the SEM images indicates the presence of irregular spherical aggregates up to 20μm in diameter in the deposit region. containing larger amount of calcium carbonate as well as in the regions adjacent to the deposit. These spherical aggregates seem to be absorbed and integrated into the pulp fibres and present characteristics similar to those of partially cooked cationic starch. The analysed deposits are characterised by a dense and thick substance, forming a plate with highly adhesive property. This adhesive substance has a characteristic similar to glue with a large amount of organic matter due to the high weight loss shown by the TG curve. The results are consistent with the interaction ofparticles of negatively charged calcium carbonate and cationic starch, forming sterically stabilized deposits, which firmly adhere to the paper microstructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biological response following subcutaneous and bone implantation of β-wollastonite(β-W)-doped α-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalcium phosphate (TCP), consisting of a mixture of α- and β-polymorphs; TCP doped with 5 wt. % of β-W (TCP5W), composed of α-TCP as only crystalline phase; and TCP doped with 15 wt. % of β-W (TCP 15), containing crystalline α-TCP and β-W. Cylinders of 2×1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue β-W-doped α-TCP implants (TCP5W and TCP 15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Détermination de l'activité du calcium par la méthode d'effusion de Knudsen. Calcul, à partir de la distribution mesurée pour l'aluminium entre l'alliage et du fer pur, de l'activité de l'aluminium dans des alliages riches en calcium. Détermination en combinant les deux méthodes, des activités des deux composants et de l'énergie de Gibbs de mélange pour tout le domaine de composition. Calcul et analyse du facteur de structure concentration-concentration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explored in this study is an electronically mediated reaction (EMR) route for the production of niobium powder using calcium as a reductant for niobium oxide (Nb2O5). Feed material, Nb2O5, and reductant calcium alloy containing aluminum and nickel were charged into electronically isolated locations in a molten salt (e.g. CaCl2) at 1173 K. The current flow through an external path between the feed and reductant locations was monitored. A current approximately 0.4 A was measured during the reaction in the external circuit connecting cathode and anode location. Niobium powder with low aluminum and nickel content was obtained although liquid Ca–Al–Ni alloy was used as the reductant. This clearly demonstrates that niobium metal powder can be produced by an electronically mediated reaction (EMR), without direct physical contact between feed (Nb2O5) and reductant (calcium). Mechanism of calciothermic reduction of Nb2O5 in the molten salt is discussed using an isothermal chemical potential diagram.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase equilibria of the system Ca-Ta-O is established by equilibrating eleven samples at 1200 K for prolonged periods and phase identification in quenched samples by optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Four ternary oxides are identified: CaTa4O11, CaTa2O6, Ca2Ta2O7 and Ca4Ta2O9. Isothermal section of the phase diagram is composed using the results. Thermodynamic properties of the ternary oxides are measured in the temperature range from 975 to 1275 K employing solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells essentially measure the chemical potentials of CaO in two-phase fields (Ta2O5 + CaTa4O11), (CaTa4O11 + CaTa2O6), (CaTa2O6 + Ca2Ta2O7), and (Ca2Ta2O7 + Ca4Ta2O9) of the pseudo-binary system CaO-Ta2O5. The standard Gibbs energies of formation of the four ternary oxides from their component binary oxides Ta2O5 and CaO are given by: Delta G(f)((ox))(o) (CaTa4O11) (+/- 482)/J mol(-1) = -58644+21.497 (T/K) Delta G(f)((ox))(o) (CaTa2O6) (+/- 618)/J mol(-1) = -55122+21.893 (T/K) Delta G(f)((ox))(o) (Ca2Ta2O7) (+/- 729)/J mol(-1) = -82562+31.843 (T/K) Delta G(f)((ox))(o) (Ca4Ta2O9) (+/- 955)/J mol(-1) = -126598+48.859 (T/K) The Gibbs energy of formation of the four ternary compounds obtained in this study differs significantly from that reported in the literature. The thermodynamic data and phase diagram are used for understanding the mechanism and kinetics of calciothermic and electrochemical reduction of Ta2O5 to metal. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new blue phosphorescent glass-ceramic, Eu2+ and Nd3+, co-doped CaO-Al2O3-B2O3, was synthesized. After the irradiation with ultraviolet (UV) light, the glass-ceramic emitted blue long-lasting phosphorescence (LLP) with a spectrum peaking at about 464 nm ascribed to the characteristic 4f(6)5d(1) -> 8S(7/2) transition of Eu2+. This phosphorescence can be seen in the dark 1 h after the irradiation. However, the transparent Eu2+ and Nd3+ co-doped CaO-Al2O3-B2O3 glass did not show the phosphorescence. By the X-ray diffraction diffusion (XRD) data, alpha-CaAl2B2O7 was demonstrated to be the crystallites in the glass-ceramic. We think that alpha-CaAl2B2O7:Eu2+ Nd3+ crystallites produced during the heat treatment of the glass contribute to the LLP of the glass-ceramic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

XAFS (EXAFS and XANES) at Eu-L-3 edge were used to determine the local structure and the valences of europium in CaBPO5:Eu prepared in air. The results of EXAFS showed that the doped europium atoms were nine-coordinated by oxygen atoms and the distances of bond Eu-O were 2.39 Angstrom in the host lattice. XANES at Eu-L-3 edge exhibited that Eu2+ and Eu3+ coexisted in the matrix. The luminescent spectrum of the material excited by VUV at 147 nm presented a similar spectrum with that excited by f-f transition of Eu2+ at 396 nm and f-d transition of Eu2+ at 312 nm. The broad emission band due to both 4f(6)5d - 4f(7) transition of EU2+ and f - f transition of Eu3+ could be observed in emission spectra, which indicated that the trivalent europium ions were reduced in air in the matrix at high temperature by the defects [V-Cn]" formed by aliovalent substitution between Ca2+ and Eu3+ ions. The UV excitation spectrum showed the typical f-f transition of Eu3+ and f-d transition of Eu2+. The bands with the maxima at about 113 and 158 nm in VUV excitation spectrum were assigned to originate from the absorption of the host lattice.