994 resultados para Calcium alginate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the objective of making calcium alginate gel beads with small and uniform size, membrane emulsification coupled with internal gelation was proposed. Spherical gel beads with mean size of about 50 mum, and even smaller ones in water, and with narrow size distribution were successfully obtained. Experimental studies focusing mainly on the effect of process parameters on bead properties were performed. The size of the beads was mainly dependent on the diameter of the membrane pores. High transmembrane pressure made for large gel beads with wide size distribution. Low sodium alginate concentration produced nonspherical beads, whereas a high concentration was unsuitable for the production of small beads with narrow distribution. Thus 1.5% w/v was enough. A high surfactant concentration favored the formation of small beads, but the adverse effect on mass transfer should be considered in this novel process. (C) 2002 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for ‘on-demand’ use. Materials & methods: In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Results: Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Conclusion: Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different culture conditions for Protaminobacter rubrum and enzymatic reaction parameters were evaluated with the goal of improving isomaltulose production. P. rubrum was grown in a medium with 1% (w/v) cane molasses and 0.5% yeast extract and achieved a maximum cell yield Y(x/s) of 0.295 g of cells/g sucrose and a specific growth rate (mu) of 0.192 h(-1). The immobilization of P. rubrum cells was carried out with calcium alginate, glutaraldehyde and polyethyleneimine. Stabile immobilized cell pellets were obtained and used 24 times in batch processes. Enzymatic conversion was carried out at different sucrose concentrations and in pH 6 medium with 70% (w/v) sucrose at 30 degrees C an isomaltulose yield of 89-94% (w/v) was obtained. The specific activity of the P. rubrum immobilized pellets in calcium alginate at 30 degrees C ranged from 1.6 to 4.0 g isomaltulose g(-1) pellet h(-1), respectively with 70% and 65% sucrose solution, while in lower sucrose concentration had higher specific activities presumably due to substrate inhibition of the isomaltulose synthase in higher sucrose concentrations. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes fructose oligosaccharide (FOS) production by the immobilized mycelia (IM) of a strain of Aspergillus japonicus, isolated from soil. The microorganism was inoculated into 50 mi of medium composed of sugar cane molasses (5.0% of total sugars); yeast powder; 2.0%; K2HPO4, 0.5%; NaNO3, 0.2%; MgSO4. 7H(2)O, 0.05%; KCl, 0.05%, final pH 5.0, and the flasks were agitated in an orbital shaker at 200 rpm for 60 h, at 30 degrees C. The beta-fructofuranosidase activity (Uf), transfructosylating activity (Ut), hydrolyzing activity (Uh), and FOS production were analyzed by high performance liquid chromatography. FOS production was performed in a batch process in a 2-l jar fermenter by IM in calcium alginate beads. The optimum pH and temperature were 5.0-5.6 and 55 degrees C, respectively No loss of activity was observed when the mycelium was maintaned at 60 degrees C for 60 min. Maximum production was obtained using 5.75% (cellular weight/volume) of mycelia (122.4 Ut g(-1)) and 65% sucrose solution (w:v) for 4 h of reaction when the final product reached 61.28% of fetal FOS containing GF(2) (30.56%), GF(3) (26.45%), GF(4) (4.27%), sucrose (9.6%) and glucose (29.10%). In the assay conditions, 23 batches were performed without loss of activity of the IM, showing that the microorganism and the process utilized have potential for industrial applications. (C) 1998 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alginate polysaccharide is a promising biosorbent for metal uptake. Dry protonated calcium alginate beads for biosorption applications were prepared, briefly characterized and tested for lead uptake. Several advantages of this biosorbent are reported and discussed in comparison with other alginate-based sorbents. The alginate beads contained 4.7 mmol/g of COOH groups, which suffered hydrolysis near pH 4. The Weber and Morris model, applied to kinetic results of lead uptake, showed that intraparticle diffusion was the rate-controlling step in lead sorption by dry alginate beads. Equilibrium experiments were performed and the data were fitted with different isotherm models. The Langmuir equation was the most adequate to model lead sorption. The maximum uptake capacity (qmax) was estimated as 339 mg/g and the Langmuir constant (b) as 0.84 l/mg. These values were compared with that of other sorbents found in the literature, indicating that dry protonated calcium alginate beads are among the best biosorbents for the treatment and recovery of heavy metals from aqueous streams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alginate polysaccharide is a promising biosorbent for metal uptake. Dry protonated calcium alginate beads for biosorption applications were prepared, briefly characterized and tested for lead uptake. Several advantages of this biosorbent are reported and discussed in comparison with other alginate-based sorbents. The alginate beads contained 4.7 mmol/g of COOH groups, which suffered hydrolysis near pH 4. The Weber and Morris model, applied to kinetic results of lead uptake, showed that intraparticle diffusion was the rate-controlling step in lead sorption by dry alginate beads. Equilibrium experiments were performed and the data were fitted with different isotherm models. The Langmuir equation was the most adequate to model lead sorption. The maximum uptake capacity (qmax) was estimated as 339 mg/g and the Langmuir constant (b) as 0.84 l/mg. These values were compared with that of other sorbents found in the literature, indicating that dry protonated calcium alginate beads are among the best biosorbents for the treatment and recovery of heavy metals from aqueous streams.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polysaccharicles, as alginate and chitosan, have been used to obtain modified release dosage forms. Alginate, due to its property of building gels during the complex formation with calcium ions, allows the building of capsules containing a core constituted by calcium alginate. This work had for objective to determine the appropriate calcium concentration for the preparation of alginate-chitosan capsules, by means of calcium quantification using atomic absorption spectrophotometry. The methodology of calcium quantification was validated through analysis of the limit of detection, precision, accuracy and recovery of the method. The capsules, containing or not the drug, were prepared by the complex coacervation/ionotropic gelification method. Calcium was quantified after samples mineralization and dilution in lantanium solution. The results showed that the amount of calcium incorporated into the capsules depends on the amount of calcium added to the medium, and this ratio increases until the concentration of 1.5% of initial calcium chloride and above this concentration there is a decrease in the proportion of calcium bonded. It was observed that the proportion of calcium that links to the polymer is inversely proportional to the amount of calcium added. The calcium amount incorporated depends on the concentration of the polymeric dispersions used as well as on the ratio between the two polymers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] This paper describes, for the first time, the use of alginate hydrogels as miniaturised microvalves within microfluidic devices. These biocompatible and biodegradable microvalves are generated in situ and on demand, allowing for microfluidic flow control. The microfluidic devices were fabricated using an origami inspired technique of folding several layers of cyclic olefin polymer followed by thermocompression bonding. The hydrogels can be dehydrated at mild temperatures, 37◦C, to slightly open the microvalve and chemically erased using an ethylenediaminetetraacetic acid disodium salt (EDTA) solution, to completely open the channel, ensuring the reusability of the whole device and removal of damaged or defective valves for subsequent regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Limbal epithelial stem cells may ameliorate limbal stem cell deficiency through secretion of therapeutic proteins, delivered to the cornea in a controlled manner using hydrogels. In the present study the secretome of alginate-encapsulated limbal epithelial stem cells is investigated. Conditioned medium was generated from limbal epithelial stem cells encapsulated in 1.2% (w/v) calcium alginate gels. Conditioned medium proteins separated by 1-D gel electrophoresis were visualized by silver staining. Proteins of interest including secreted protein acidic and rich in cysteine, profilin-1, and galectin-1 were identified by immunoblotting. The effect of conditioned medium (from alginate-encapsulated limbal epithelial stem cells) on corneal epithelial cell proliferation was quantified and shown to significantly inhibit (Palginate gels may regulate corneal epithelialisation through secretion of inhibitory proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, articaine hydrochloride (ATC) is a local anesthetic widely used in dental procedures, but its side effects include paresthesia and nerve injury. Alginate/chitosan nanoparticles (AG/CSnano) can be used as carrier for drugs, overcoming the problems. The aim of this work was to evaluate the factors (Calcium/alginate [Ca2+:AG] and Chitosan/alginate [CS:AG] mass ratios) influence on the average size, polydispersity index, zeta potential and encapsulation efficiency of ATC. AG/CSnano containing ATC were prepared by ionic pregelation method. A three-level factorial design was carried out and the factors varied were Ca2+/AG mass ratio and CS/AG mass ratio. There were obtained nanoparticles with size range of 340–550 nm and polydispersity index between 0.2 and 0.5, zeta potential range –19 and –22 mV and encapsulation efficiency of ATC in AG/Csnano between 22 and 45%. According to the results, the average size, polydispersity index and encapsulation efficiency were significantly affected to the variation of Ca2+/AG and CS/AG mass ratio, but the zeta potential didn't change significantly with factor variations. The factorial design showed it was possible to identify formulations that presented better results for the parameters measured. The factor chosen for the suitable formulations was the encapsulation efficiency. Through this parameter, one formulation was chosen with highest encapsulation efficiency of ATC and presented good colloidal stability parameters aiming future clinical applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The probiotics, Lactobacillus acidophilus 547, Bifidobacterium bifidum ATCC 1994, and Lactobacillus casei 01, were encapsulated into uncoated calcium alginate beads and the same beads were coated with three types of material, chitosan, sodium alginate, and poly-L-lysine in combination with alginate. The thickness of the alginate beads increased with the addition of coating materials. No differences were detectable in the bead strength by texture analysis or in the thickness of the beads with different types of coating materials by transmission electron microscopy. The survivability of three probiotics in uncoated beads, coated beads, and as free cells (unencapsulated) was conducted in 0.6% bile salt solution and simulated gastric juice (pH 1.55) followed by incubation in simulated intestinal juice with and without 0.6% bile salt. Chitosan-coated alginate beads provided the best protection for L. acidophilus and L. casei in all treatments. However, B. bifidum did not survive the acidic conditions of gastric juice even when encapsulated in coated heads. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] This paper describes, for the first time, the use of alginate hydrogels as miniaturised microvalves within microfluidic devices. These biocompatible and biodegradable microvalves are generated in situ and on demand, allowing for microfluidic flow control. The microfluidic devices were fabricated using an origami inspired technique of folding several layers of cyclic olefin polymer followed by thermocompression bonding. The hydrogels can be dehydrated at mild temperatures, 37◦C, to slightly open the microvalve and chemically erased using an ethylenediaminetetraacetic acid disodium salt (EDTA) solution, to completely open the channel, ensuring the reusability of the whole device and removal of damaged or defective valves for subsequent regeneration.