977 resultados para Caco-2 Monolayers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have been done over the years to assess the effectiveness of Echinacea as an immunomodulator. We have assessed the potential bioavailability of alkylamides and caffeic acid conjugates using Caco-2 monolayers and compared it to their actual bioavailability in a Phase I clinical trial. The caffeic acid conjugates permeated poorly through the Caco-2 monolayers. Alkylamides were found to diffuse rapidly through Caco-2 monolayers. Differences in diffusion rates for each alkylamide correlated to structural variations, with saturation and N-terminal methylation contributing to decreases in diffusion rates. Alkylamide diffusion is not affected by the presence of other constituents and the results for a synthetic alkylamide were in line with those for alkylamides found in an ethanolic Echinacea preparation. We examined plasma from healthy volunteers for 12 hours after ingestion of Echinacea tablets manufactured from an ethanolic liquid extract. Caffeic acid conjugates could not be identified in any plasma sample at any time after tablet ingestion. Alkylamides were detected in plasma 20 minutes after tablet ingestion and for each alkylamide, pharmacokinetic profiles were devised. The data are consistent with the dosing regimen of one tablet three times daily and supports their usage as the primary markers for quality Echinacea preparations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous in vivo studies using PEG 400 showed an enhancement in the bioavailability of ranitidine. This study investigated the effect of PEG 200, 300 and 400 on ranitidine transport across Caco-2 cells. The effect of PEG polymers (20%, v/v) on the bi-directional flux of (3)H-ranitidine across Caco-2 cell monolayers was measured. The concentration dependence of PEG 400 effects on ranitidine transport was also studied. A specific screen for P-glycoprotein (P-gp) activity was used to test for an interaction between PEG and P-gp. In the absence of PEG, ranitidine transport showed over 5-fold greater flux across Caco-2 monolayers in the secretory than the absorptive direction; efflux ratio 5.38. PEG 300 and 400 significantly reduced this efflux ratio (p<0.05), whereas PEG 200 had no effect (p>0.05). In concordance, PEG 300 and 400 showed an interaction with the P-gp transporter, whereas PEG 200 did not. Interestingly, with PEG 400 a non-linear concentration dependence was seen for the inhibition of the efflux ratio of ranitidine, with a maxima at 1%, v/v (p<0.05). The inhibition of ranitidine efflux by PEG 300 and 400 which interact with P-gp provides a mechanism that may account for the observations of ranitidine absorption enhancement by PEG 400 in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One common effect of tumor promoters is increased tight junction (TJ) permeability. TJs are responsible for paracellular permeability and integrity of the barrier function. Occludin is one of the main proteins responsible for TJ structure. This study tested the effects of physiological levels of phenol, ammonia, primary bile acids (cholic acid, CA, and chenodeoxycholic acid, CDCA), and secondary bile acids (lithocholic acid, LCA, and deoxycholic acid, DCA) on paracellular permeability using a Caco-2 cell model. Paracellular permeability of Caco-2 monolayers was assessed by transepithelial electrical resistance (TER) and the apical to basolateral flux of [C-14]-mannitol. Secondary, but not primary, bile acids increased permeability as reflected by significantly decreased TER and increased mannitol flux. Both phenol and ammonia also increased permeability. The primary bile acid CA significantly increased occludin expression (P < 0.05), whereas CDCA had no significant effect on occludin expression as compared to the negative control. The secondary bile acids DCA and LCA significantly increased occludin expression (P < 0.05), whereas phenol had no significant effect on the protein expression as compared to the negative control. This suggests that the increased permeability observed with LCA, DCA, phenol, and ammonia was not related to an effect on occludin expression. In conclusion, phenol, ammonia, and secondary bile acids were shown to increase paracellular permeability and reduce epithelial barrier function at doses typical of levels found in fecal samples. The results contribute to the evidence these gut microflora-generated products have tumor-promoting activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most in vitro studies of oral drug permeability, little attempt is made to reproduce the gastrointestinal lumenal environment. The aim of this study was to evaluate the compatibility of simulated intestinal fluid (SIF) solutions with Caco-2 cell monolayers and Ussing chamber-mounted rat ileum under standard permeability experiment protocols. In preliminary experiments, fasted-state simulated intestinal fluid (FaSSIF) and fed-state simulated intestinal fluid (FeSSIF) solutions based on the dissolution medium formulae of Dressman and co-workers (1998) were modified for compatibility with Caco-2 cells to produce FaS-SIF and FeSSIF "transport" solutions for use with in vitro permeability models. For Caco-2 cells exposed to FaSSIF and FESSIF transport solutions, the transepithelial electrical resistance was maintained for over 4 h and mannitol permeability was equivalent to that in control (Hank's Balanced Salt Solution-treated) cell layers. Scanning electron microscopy revealed that microvilli generally maintained a normal distribution, although some shortening of microvilli and occasional small areas of denudation were observed. For rat ileum in the Ussing chambers, the potential difference (PD) collapsed to zero over 120 min when exposed to the FaSSIF transport solution and an even faster collapse of the PD was observed when the FeSSIF transport solution was used. Electron micrographs revealed erosion of the villi tips and substantial denudation of the microvilli after exposure of ileal tissue to FaSSIF and FeSSIF solutions, and permeability to mannitol was increased by almost two-fold. This study indicated that FaSSIF and FeSSIF transport solutions can be used with Caco-2 monolayers to evaluate drug permeability, but rat ileum in Ussing chambers is adversely affected by these solutions. Metoprolol permeability in Caco-2 experiments was reduced by 33% using the FaSSIF and 75% using the FeSSIF compared to permeability measured using HBSS. This illustrates that using physiological solutions can influence permeability measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Echinacea is composed of three major groups of compounds that are thought to be responsible for stimulation of the immune system-the caffeic acid conjugates, alkylamides and polysaccharides. This study has focussed on the former two classes, as these are the constituents found in ethanolic liquid extracts. Objective: To investigate the absorption of these two groups of compounds using Caco-2 monolayers, which are a model of the intestinal epithelial barrier. Results: The caffeic acid conjugates (caftaric acid, echinacoside and cichoric acid) permeated poorly through the Caco-2 monolayers although one potential metabolite, cinnamic acid, diffused readily with an apparent permeability (P-app) of 1x10(-4) cm/s. Alkylamides were found to diffuse through Caco-2 monolayers with P-app ranging from 3x10(-6) to 3x10(-4) cm/s. This diversity in P-app for the different alkylamides correlates to structural variations, with saturation and N-terminal methylation contributing to decreases in P-app. The transport of the alkylamides is not affected by the presence of other constituents and the results for synthetic alkylamides were in line with those for the alkylamides in the echinacea preparation. Conclusion: Alkylamides but not caffeic acid conjugates are likely to cross the intestinal barrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bidirectional transport studies were conducted using Caco-2, MDCK, and MDCK-MDR1 to determine P-gp influences in lamivudine and zidovudine permeability and evaluate if zidovudine permeability changes with the increase of zidovudine concentration and/or by association of lamivudine. Transport of lamivudine and zidovudine separated and coadministrated across monolayers based on these cells were quantified using LC-MS-MS. Drug efflux by P-gp was inhibited using GG918. Bidirectional transport of lamivudine and zidovudine was performed across MDCK-MDR1 and Caco-2 cells. Statistically significant transport decrease in B -> A direction was observed using MDCK-MDR1 for zidovudine and MDCK-MDR1 and Caco-2 for lamivudine. Results show increased transport in B -> A and A -> B directions as concentration increases but data from P(app) increase in both directions for both drugs in Caco-2, decrease in MDCK, and does not change significantly in MDCK-MDR1. Zidovudine transport in A -> B direction increases when coadministrated with increasing lamivudine concentration but does not change significantly in B -> A direction. Zidovudine and lamivudine are P-gp substrates, but results assume that P-gp does not affect significantly lamivudine and zidovudine. Their transport in monolayers based on Caco-2 cells increase proportionally to concentration (in both directions) and zidovudine transport in Caco-2 cell monolayer does not show significant changes with lamivudine increasing concentrations. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4413-4419, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Food allergy is a common allergic disorder--especially in early childhood. The avoidance of the allergenic food is the only available method to prevent further reactions in sensitized patients. A better understanding of the immunologic mechanisms involved in this reaction would help to develop therapeutic approaches applicable to the prevention of food allergy. OBJECTIVE: To establish a multi-cell in vitro model of sensitized intestinal epithelium that mimics the intestinal epithelial barrier to study the capacity of probiotic microorganisms to modulate permeability, translocation and immunoreactivity of ovalbumin (OVA) used as a model antigen. METHODS: Polarized Caco-2 cell monolayers were conditioned by basolateral basophils and used to examine apical to basolateral transport of OVA by ELISA. Activation of basophils with translocated OVA was measured by beta-hexosaminidase release assay. This experimental setting was used to assess how microorganisms added apically affected these parameters. Basolateral secretion of cytokine/chemokines by polarized Caco-2 cell monolayers was analysed by ELISA. RESULTS: Basophils loaded with OVA-specific IgE responded to OVA in a dose-dependent manner. OVA transported across polarized Caco-2 cell monolayers was found to trigger basolateral basophil activation. Microorganisms including lactobacilli and Escherichia coli increased transepithelial electrical resistance while promoting OVA passage capable to trigger basophil activation. Non-inflammatory levels of IL-8 and thymic stromal lymphopoietin were produced basolaterally by Caco-2 cells exposed to microorganisms. CONCLUSION: The complex model designed in here is adequate to learn about the consequence of the interaction between microorganisms and epithelial cells vis-a-vis the barrier function and antigen translocation, two parameters essential to mucosal homeostasis. It can further serve as a direct tool to search for microorganisms with anti-allergic and anti-inflammatory properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ulcerative colitis is characterised by impairment of the epithelial barrier and tight junction alterations resulting in increased intestinal permeability. UC is less common in smokers with smoking reported to decrease paracellular permeability. The aim of this study was thus to determine the effect of nicotine, the major constituent in cigarettes and its metabolites on the integrity of tight junctions in Caco-2 cell monolayers. The integrity of Caco-2 tight junctions was analysed by measuring the transepithelial electrical resistance (TER) and by tracing the flux of the fluorescent marker fluorescein, after treatment with various concentrations of nicotine or nicotine metabolites over 48 h. TER was significantly higher compared to the control for all concentrations of nicotine 0.01-10 M at 48 h (p < 0.001), and for 0.01 mu M (p < 0.001) and 0.1 mu M and 10 M nicotine (p < 0.01) at 12 and 24 h. The fluorescein flux results supported those of the TER assay. TER readings for all nicotine metabolites tested were also higher at 24 and 48 h only (p <= 0.01). Western blot analysis demonstrated that nicotine up-regulated the expression of the tight junction proteins occludin and claudin-l (p < 0.01). Overall, it appears that nicotine and its metabolites, at concentrations corresponding to those reported in the blood of smokers, can significantly improve tight junction integrity, and thus, decrease epithelial gut permeability. We have shown that in vitro, nicotine appears more potent than its metabolites in decreasing epithelial gut permeability. We speculate that this enhanced gut barrier may be the result of increased expression of claudin-l and occludin proteins, which are associated with the formation of tight junctions. These findings may help explain the mechanism of action of nicotine treatment and indeed smoking in reducing epithelial gut permeability. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to investigate the physicochemical parameters which can influence drug loading within liposomes and to characterise the effect such formulations have on drug uptake and transport across in vitro epithelial barrier models. Liposomes composed of phosphatidylcholine (PC) or distearoyl phosphatidylcholine (DSPC) and cholesterol (0, 4, 8, 16 µM) were prepared and optimised in terms of drug loading using the hand-shaking method (Bangham et al., 1965). Subsequently, liposomes composed of 16 µM PC or DSPC and cholesterol (4 µM) were used to monitor hydroxybenzoate release and transport from Iiposomes. The MIT (3[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) and crystal violet assays were employed to determine toxicity of the Iiposome. formulations towards the Caco-2 cell line, employed to model the epithelial barrier in vitro. Uptake and transport of mannitol, propranolol, glutamine and digoxin was measured in the presence and absence of Iiposome formulations to establish changes in absorption resulting from the presence of lipid formulations. Incorporation of the four hydroxybenzoates was shown to be influenced by a number of factors, including liposome composition and drug conformation. Methyl hydroxybenzo.ate (MP) was incorporated into the bilayer most effectively with percentage incorporation of 68% compared to 45% for butyl hydroxybenzoate (BP), despite its increased Iipophilicity. This was attributed to the decreased packing ability of BP within the hydrocarbon core of the lipid bilayer compared to MP. Release studies also suggested that the smaller MP was more strongly incorporated within the lipid bilayer with only 8% of the incorporated solute being released after 48-hours compared to 17% in the case of BP. Model transport studies were seen to reflect drug release profiles from the liposome bilayers with significantly (p < 0.01) higher amounts of BP partitioning from the liposome compared to MP, Caco-2 cell viability was maintained above 86% in the presence of all Iiposome formulations tested indicating the liposome formulations are non-toxic towards Caco-2 cells. Paracellular (apical-to-basolateral) transport of mannitol was significantly increased in the presence of DSPC, PC / DSPC:Cholesterol (16:4 µM; 1000 µg). Glutamine uptake and transport via the carrier-mediated route was Significantly (p < 0.01) increased in the presence of PC I DSPC:Cholesterol (16:0; 16:4 µM). Digoxin apical-to-basolateral transport was significantly increased (p < 0,01) in the presence of PC / DSPC:Cholesterol (16:0; 16:4 µM); thus reducing digoxin efflux via P-glycoprotein. In contrast, PC:ChoJesterol (16:0; 16:4 µM) significantly (p < 0.01) decreased propranolol uptake via the passive transcellular route. Bi-directional transport of propranolol was significantly (p < 0,01) decreased in the presence of PC/DSPC:Cholesterol (16:0; 16:4 µM). The structure of a solute is an important determinant for the incorporation and release of a solute from liposome formulations. PC, DSPC and cholesterol liposome formulations are nontoxic towards Caco-2 cell monolayers and improved uptake and transport of mannitol, glutamine. and digoxin across Caco-2 cell monolayers; thus providing a potential alternative delivery vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine whether multiwalled carbon nanotubes (MWNCT) are taken up by and are toxic to human intestinal enterocytes using the Caco-2 cell model. Caco-2 cells were exposed to 50 ?g/ml MWCNT (oxidized or pristine) for 24 h, and experiments were repeated in the presence of 2.5 mg/L natural organic matter. Cells displayed many of the properties that characterize enterocytes, such as apical microvilli, basolateral basement membrane, and glycogen. The cell monolayers also displayed tight junctions and electrical resistance. Exposure to pristine and oxidized MWCNT, with or without natural organic matter, did not markedly affect viability, which was assessed by measuring activity of released lactate dehydrogenase (LDH) and staining with propidium iodide. Ultrastructural analysis revealed some damage to microvilli colocalized with the MWCNT; however, neither type of MWCNT was taken up by Caco-2 cells. In contrast, pristine and oxidized MWCNT were taken up by the macrophage RAW 264.7 line. Our study suggests that intestinal enterocytes cells do not take up MWCNT. [Authors]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precise mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple consequences that remain poorly understood at the molecular level. Deciphering such events can provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the mucosal immune system include maturation prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. Using human intestinal epithelial Caco-2 cell grown as polarized monolayers, we found that association of a Lactobacillus or a Bifidobacterium with nonspecific secretory IgA (SIgA) enhanced probiotic adhesion by a factor of 3.4-fold or more. Bacteria alone or in complex with SIgA reinforced transepithelial electrical resistance, a phenomenon coupled with increased phosphorylation of tight junction proteins zonula occludens-1 and occludin. In contrast, association with SIgA resulted in both enhanced level of nuclear translocation of NF-κB and production of epithelial polymeric Ig receptor as compared with bacteria alone. Moreover, thymic stromal lymphopoietin production was increased upon exposure to bacteria and further enhanced with SIgA-based complexes, whereas the level of pro-inflammatory epithelial cell mediators remained unaffected. Interestingly, SIgA-mediated potentiation of the Caco-2 cell responsiveness to the two probiotics tested involved Fab-independent interaction with the bacteria. These findings add to the multiple functions of SIgA and underscore a novel role of the antibody in interaction with intestinal bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α) on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL) for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rifampicin, a poorly soluble drug, has great importance in therapeutics as it is the main drug used to treat tuberculosis. The characterization of its permeability and the factors that influence it represent an important tool for predicting its bioavailability. Caco-2 cell monolayers were used as models of the intestinal mucosa to assess the uptake and transport of rifampicin and the effects of various experimental conditions were investigated, in order to establish the influence of these variables on rifampicin permeability. Different pHs (5.8, 6.8 and 7.4) in the apical medium, the presence or absence of mucin (3.0% w/v) in the donor site and the presence or absence of bovine serum albumin (4.0% v/v) in the receptor chamber were the evaluated conditions. The quantification of rifampicin in the apical or basolateral chambers was performed by a validated HPLC-UV method. The change in the donor chamber pH showed that permeability values were greater at pH 6.8, although this increase does not result in an alteration of the qualitative classification of rifampicin, which has high permeability. Mucin and bovine serum showed no effects on the permeability of rifampicin at the concentration tested. Overall, the current study suggests that pH, artificial mucin and bovine serum proteins have no influence on rifampicin permeability. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An uptake system was developed using Caco-2 cell monolayers and the dipeptide, glycyl-[3H]L-proline, as a probe compound. Glycyl-[3H]L-proline uptake was via the di-/tripeptide transport system (DTS) and, exhibited concentration-, pH- and temperature-dependency. Dipeptides inhibited uptake of the probe, and the design of the system allowed competitors to be ranked against one another with respect to affinity for the transporter. The structural features required to ensure or increase interaction with the DTS were defined by studying the effect of a series of glycyl-L-proline and angiotensin-converting enzyme (ACE)-inhibitor (SQ-29852) analogues on the uptake of the probe. The SQ-29852 structure was divided into six domains (A-F) and competitors were grouped into series depending on structural variations within specific regions. Domain A was found to prefer a hydrophobic function, such as a phenyl group, and was intolerant to positive charges and H+ -acceptors and donors. SQ-29852 analogues were more tolerant of substitutions in the C domain, compared to glycyl-L-proline analogues, suggesting that interactions along the length of the SQ-29852 molecule may override the effects of substitutions in the C domain. SQ-29852 analogues showed a preference for a positive function, such as an amine group in this region, but dipeptide structures favoured an uncharged substitution. Lipophilic substituents in domain D increased affinity of SQ-29852 analogues with the DTS. A similar effect was observed for ACE-NEP inhibitor analogues. Domain E, corresponding to the carboxyl group was found to be tolerant of esterification for SQ-29852 analogues but not for dipeptides. Structural features which may increase interaction for one series of compounds, may not have the same effect for another series, indicating that the presence of multiple recognition sites on a molecule may override the deleterious effect of anyone change. Modifying current, poorly absorbed peptidomimetic structures to fit the proposed hypothetical model may improve oral bioavailability by increasing affinity for the DTS. The stereochemical preference of the transporter was explored using four series of compounds (SQ-29852, lysylproline, alanylproline and alanylalanine enantiomers). The L, L stereochemistry was the preferred conformation for all four series, agreeing with previous studies. However, D, D enantiomers were shown in some cases to be substrates for the DTS, although exhibiting a lower affinity than their L, L counterparts. All the ACE-inhibitors and β-lactam antibiotics investigated, produced a degree of inhibition of the probe, and thus show some affinity for the DTS. This contrasts with previous reports that found several ACE inhibitors to be absorbed via a passive process, thus suggesting that compounds are capable of binding to the transporter site and inhibiting the probe without being translocated into the cell. This was also shown to be the case for oligodeoxynucleotide conjugated to a lipophilic group (vitamin E), and highlights the possibility that other orally administered drug candidates may exert non-specific effects on the DTS and possibly have a nutritional impact. Molecular modelling of selected ACE-NEP inhibitors revealed that the three carbonyl functions can be oriented in a similar direction, and this conformation was found to exist in a local energy-minimised state, indicating that the carbonyls may possibly be involved in hydrogen-bond formation with the binding site of the DTS.