945 resultados para Ca2 Release


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP(3)Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP(3)Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by alpha subunit of the eukaryotic initiation factor 2 alpha phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. Cell Death and Disease (2010) 1, e54; doi:10.1038/cddis.2010.31; published online 15 July 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE:<br/>To investigate endothelin 1 (Et1)-dependent Ca(2+)-signaling at the cellular and subcellular levels in retinal arteriolar myocytes.<br/>METHODS:<br/>Et1 responses were imaged from Fluo-4-loaded smooth muscle in isolated segments of rat retinal arteriole using confocal laser microscopy.<br/>RESULTS:<br/>Basal [Ca(2+)](i), subcellular Ca(2+)-sparks, and cellular Ca(2+)-oscillations were all increased during exposure to Et1 (10 nM). Ca(2+)-spark frequency was also increased by 90% by 10 nM Et1. The increase in oscillation frequency was concentration dependent and was inhibited by the EtA receptor (Et(A)R) blocker BQ123 but not by the EtB receptor antagonist BQ788. Stimulation of Ca(2+)-oscillations by Et1 was inhibited by a phospholipase C blocker (U73122; 10 µM), two inhibitors of inositol 1,4,5-trisphosphate receptors (IP(3)Rs), xestospongin C (10 µM), 2-aminoethoxydiphenyl borate (100 µM), and tetracaine (100 µM), a blocker of ryanodine receptors (RyRs).<br/>CONCLUSIONS:<br/>Et1 stimulates Ca(2+)-sparks and oscillations through Et(A)Rs. The underlying mechanism involves the activation of phospholipase C and both IP(3)Rs and RyRs, suggesting crosstalk between these Ca(2+)-release channels. These findings suggest that phasic Ca(2+)-oscillations play an important role in the smooth muscle response to Et1 within the retinal microvasculature and support an excitatory, proconstrictor role for Ca(2+)-sparks in these vessels.

Relevância:

100.00% 100.00%

Publicador: