940 resultados para Ca(OH)2
Resumo:
With construction of a thermochemical energy conversion prototype system to store solar heat, thermal dissociation of pellets of Ca(OH)2 and hydration of CaO have been investigated in some detail for its application to the system. The inorganic substance is very attractive as a material for long term heat storage, but molar density changes associated with the reaction are fairly large. Therefore, this factor has been taken into account in the kinetic equation. The importance of additives and pellet size has been discussed considering reactivity and strength of pellets. An analysis has been attempted when chemical reaction is important. The deformation of pellets was observed during hydration.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Química Analítica) U.A.N.L.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate the distribution of microorganisms in the root canal system (RCS) and periapical lesions of dogs' teeth after rotary instrumentation and placement of different calcium hydroxide [Ca(OH)2]-based intracanal dressings. MATERIALS AND METHODS: Chronic periapical lesions were experimentally induced in 80 premolar roots of four dogs. Instrumentation was undertaken using the ProFile rotary system and irrigation with 5.25% sodium hypochlorite. The following Ca(OH) 2-based pastes were applied for 21 days: group 1 - Calen (n=18); group 2 - Calen+CPMC (n=20); group 3 - Ca(OH)2 p.a. + anaesthetic solution (n=16) and group 4 - Ca(OH)2 p.a.+ 2% chlorhexidine digluconate (n=18). Eight root canals without endodontic treatment constituted the control group. Histological sections were obtained and stained with Brown & Brenn staining technique to evaluate the presence of microorganisms in the main root canal, ramifications of the apical delta and secondary canals, apical cementoplasts, dentinal tubules, areas of cemental resorption and periapical lesions. The results were analyzed statistically by the Mann-Whitney U test (p<0.05). RESULTS: The control group showed the highest prevalence of microorganisms in all sites evaluated. Gram-positive cocci, bacilli and filaments were the most frequent morphotypes. Similar microbial distribution patterns in the RCS and areas of cementum resorption were observed in all groups (p>0.05). The percentage of RCS sites containing microorganisms in groups 1, 2, 3, 4 and control were: 67.6%, 62.5%, 78.2%, 62.0% and 87.6%, respectively. CONCLUSION: In conclusion, the histomicrobiological analysis showed that the rotary instrumentation and the different calcium hydroxide pastes employed did not effectively eliminate the infection from the RCS and periapical lesions. However, several bacteria seen in the histological sections were probably dead or were inactivated by the biomechanical preparation and calcium hydroxide-based intracanal dressing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Increasing the electrolyte capacity of alkaline Zn-air fuel cells by scavenging zincate with Ca(OH)2
Resumo:
The use of calcium hydroxide for scavenging zincate species is demonstrated to be a highly effective approach for increasing the electrolyte capacity and improving the performance of the zinc-air fuel cell system. A fundamental approach is established in this study to quantify the formation of calcium zincate as the product of scavenging and the amount of water compensation necessary for optimal performance. The good agreement between predicted and experimental results proves the validity of the proposed theoretical approach. By applying the results of theoretical predictions, both the electrolyte capacity and the cell longevity have been increased by more than 40%. It is also found that, using Ca(OH)
Resumo:
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2•2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm-1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm-1 are assigned to the SO42- ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm-1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm-1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm-1 and at 417, 434 and 482 cm-1 are assigned to the SO42- 4 and 2 bending modes, respectively. Raman bands at 337 and 373 cm-1 are assigned to O-Sb-O bending modes. Multiple Raman bands for both SO42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.
Resumo:
Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.