349 resultados para CZE
Resumo:
Vecuronium bromide is a neuromuscular blocking agent used for anesthesia to induce skeletal muscle relaxation. HPLC and CZE analytical methods were developed and validated for the quantitative determination of vecuronium bromide. The HPLC method was achieved on an amino column (Luna 150 x 4.6 mm, 5 mu m) using UV detection at 205 nm. The mobile phase was composed of acetonitrile:water containing 25.0 mmol L(-1) of sodium phosphate monobasic (50:50 v/v), pH 4.6 and flow rate of 1.0 mL min(-1). The CZE method was achieved on an uncoated fused-silica capillary (40.0 cm total length, 31.5 cm effective length and 50 mu m i.d.) using indirect UV detection at 230 nm. The electrolyte comprised 1.0 mmol L(-1) of quinine sulfate dihydrate at pH 3.3 and 8.0% of acetonitrile. The results were used to compare both techniques. No significant differences were observed (p > 0.05).
Resumo:
Objectives: The aim of this study was to compare specificity and sensitivity of different biological markers that can be used in a forensic field to identify potentially dangerous drivers because of their alcohol habits. Methods: We studied 280 Swiss drivers after driving while under the alcohol influence. 33 were excluded for not having CDT N results, 247 were included (218 men (88%) and 29 women (12%). Mean age was 42,4 (SD:12, min: 20 max: 76). The evaluation of the alcohol consumption concerned the month before the CDT test and was considered as such after the interview: Heavy drinkers (>3 drinks per day): 60 (32.7%), < 3 drinks per day and moderate: 127 (51.4%) 114 (46.5%), abstinent: 60 (24.3%) 51 (21%). Alcohol intake was monitored by structured interviews, self-reported drinking habits and the C-Audit questionnaire as well as information provided by their family and general practitioner. Consumption was quantified in terms of standard drinks, which contain approximately 10 grams of pure alcohol (Ref. WHO). Results: comparison between moderate (less or equal to 3 drinks per day) and excessive drinkers (more than 3 drinks) Marker ROC area 95% CI cut-off sensitivity specificity CDT TIA 0.852 0.786-0917 2.6* 0.93 LR+1.43 0.35 LR-0.192 CDT N latex 0.875 0.821-0.930 2.5* 0.66 LR+ 6.93 0.90 LR- 0.369 Asialo+disialo-tf 0.881 0.826-0.936 1.2* 0.78 LR+4.07 0.80 LR-0.268 1.7° 0.66 LR+8.9 0.93 LR-0.360 GGT 0.659 0.580-0.737 85* 0.37 LR+2.14 0.83 LR-0.764 * cut-off point suggested by the manufacturer ° cut-off point suggested by our laboratory Conclusion: With the cut-off point established by the manufacturer, CDT TIA performed poorly in term of specificity. N latex CDT and CZE CDT were better, especially if a 1.7 cut-off is used with CZE
Resumo:
The possibility to compress analyte bands at the beginning of CE runs has many advantages. Analytes at low concentration can be analyzed with high signal-to-noise ratios by using the so-called sample stacking methods. Moreover, sample injections with very narrow initial band widths (small initial standard deviations) are sometimes useful, especially if high resolutions among the bands are required in the shortest run time. In the present work, a method of sample stacking is proposed and demonstrated. It is based on BGEs with high thermal sensitive pHs (high dpH/dT) and analytes with low dpK(a)/dT. High thermal sensitivity means that the working pK(a) of the BGE has a high dpK(a)/dT in modulus. For instance, Tris and Ethanolamine have dpH/dT = -0.028/degrees C and -0.029/degrees C, respectively, whereas carboxylic acids have low dpK(a)/dT values, i.e. in the -0.002/degrees C to+0.002/degrees C range. The action of cooling and heating sections along the capillary during the runs affects also the local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band compression is theoretically calculated using a simple model. Finally, this stacking method was demonstrated for amino acids derivatized with naphthalene-2,3-dicarboxaldehyde and fluorescamine using a temperature difference of 70 degrees C between two neighbor sections and Tris as separation buffer. In this case, the BGE has a high pH thermal coefficient whereas the carboxylic groups of the analytes have low pK(a) thermal coefficients. The application of these dynamic thermal gradients increased peak height by a factor of two (and decreased the standard deviations of peaks by a factor of two) of aspartic acid and glutamic acid derivatized with naphthalene-2,3-dicarboxaldehyde and serine derivatized with fluorescamine. The effect of thermal compression of bands was not observed when runs were accomplished using phosphate buffer at pH 7 (negative control). Phosphate has a low dpH/dT in this pH range, similar to the dK(a)/dT of analytes. It is shown that vertical bar dK(a)/dT-dpH/dT vertical bar >> 0 is one determinant factor to have significant stacking produced by dynamic thermal junctions.
Resumo:
In a previous work [M. Mandaji, et al., this issue] a sample stacking method was theoretically modeled and experimentally demonstrated for analytes with low dpK(a)/dT (analytes carrying carboxylic groups) and BGEs with high dpH/dT (high pH-temperature-coefficients). In that work, buffer pH was modulated with temperature, inducing electrophoretic mobility changes in the analytes. In the present work, the opposite conditions are studied and tested, i.e. analytes with high dpK(a)/dT and BGEs that exhibit low dpH/dT. It is well known that organic bases such as amines, imidazoles, and benzimidazoles exhibit high dpK(a)/dT. Temperature variations induce instantaneous changes on the basicity of these and other basic groups. Therefore, the electrophoretic velocity of some analytes changes abruptly when temperature variations are applied along the capillary. This is true only if BGE pH remains constant or if it changes in the opposite direction of pK(a) of the analyte. The presence of hot and cold sections along the capillary also affects local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band stacking efficacy was also taken into account in the theoretical model presented. Finally, this stacking method is demonstrated for lysine partially derivatized with naphthalene-2,3-dicarboxaldehyde. In this case, the amino group of the lateral chain was left underivatized and only the alpha amino group was derivatized. Therefore, the basicity of the lateral amino group, and consequently the electrophoretic mobility, was modulated with temperature while the pH of the buffer used remained unchanged.
Resumo:
CZE coupled to sheath liquid-based electrospray ionization (ESI) and multiple-stage ion trap mass spectrometry (MS(n) ) was used for the confirmation analysis of ethyl glucuronide (EtG) and ethyl sulfate (EtS) in human serum and urine collected after intake of alcoholic beverages. Electrophoretic separations were performed in uncoated fused-silica capillaries using a pH 9.5 ammonium acetate background electrolyte and normal polarity. MS detection of EtG and EtS occurred after negative ionization using a spray liquid containing 0.5% v/v ammonia in isopropanol/water (60:40%, v/v). CZE-MS and CZE-MS² results obtained after injection of solid-phase extracts for EtG and EtS and of diluted urine confirmed the presence of EtG and EtS in samples whose levels were previously determined by CZE with indirect UV detection. Detection limits of each compound were estimated to be around 2.0 (injection of diluted urine) and 0.2 μg/mL (extracts).
Resumo:
The analysis of ethyl glucuronide (EtG), a marker of recent alcohol consumption, in serum with an optimized CZE assay is reported. The method uses a 0.1-mm id fused-silica capillary of 50 cm effective length that is coated with linear polyacrylamide, a pH 4.4 nicotinic acid/epsilon-aminocaproic acid (EACA) BGE, reversed polarity and indirect analyte detection. The assay is based on a 1:1 dilution of serum with deionized water and has LODs for EtG, lactate and acetate of 3.8 x 10(-7) M, 2.60 x 10(-6 )M and 2.18 x 10(-6 )M, respectively. Separation of EtG from endogenous macro- and microcomponents (anionic serum components of high and low concentration, respectively) and its quantification are shown to be possible for a wide range of lactate (stacker) and acetate (destacker) concentrations, macrocomponents that have an impact on the CZE behavior of EtG and that change after intake of ethanol. The assay has been successfully applied to the analysis of EtG, lactate and acetate in (i) sera of volunteers that ingested known amounts of alcohol and (ii) samples of patients that were classified (teetotalers and social drinkers vs. alcohol abusers) via analysis of carbohydrate-deficient transferrin.
Resumo:
Application of pressure-driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure-driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused-silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor-Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection.
Resumo:
"Osobne odbicie z t. XXXVIII Rozpraw Wydziału filologicznego Akademii Umiejętności w Krakowie"--T.p. verso.
Resumo:
With his: Zwierciadło Rzeczypospolitej Polskiej na początku roku 1598 wystawione. Kraków : Biblioteka Polska, 1859.
Resumo:
Bibliographical references included in "Przypisy" (p. [289]-500)
Resumo:
Mode of access: Internet.
Resumo:
The present study evaluates the possibility of eliminating the purification steps involved in the characterization of HA by capillary zone electrophoresis (CZE). The HAs of various sources were analyzed, showing different electropherograms by CZE, which depend on the charge and size of HA. The data suggest that the purification of the sample is not necessary to characterize HAs. Based on the results, CZE showed to be a promising tool to characterize HA of different origins without the purification step of the sample.
Resumo:
A simple and fast capillary zone electrophoresis (CZE) method has been developed and validated for quantification of a non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, in pharmaceuticals. The analysis was optimized using 10 mmol L-1 sodium phosphate buffer pH 2.5, +25 kV applied voltage, hydrodynamic injection 0.5 psi for 5 s and direct UV detection at 200 µm. Diazepam (50.0 µg mL-1) was used as internal standard. Under these conditions, nevirapine was analyzed in approximately less than 2.5 min. The analytical curve presented a coefficient of correlation of 0.9994. Limits of detection and quantification were 1.4 µg mL-1 and 4.3 µg mL-1, respectively. Intra- and inter-day precision expressed as relative standard deviations were 1.4% and 1.3%, respectively and the mean recovery was 100.81%. The active pharmaceutical ingredient was subjected to hydrolysis (acid, basic and neutral) and oxidative stress conditions. No interference of degradation products and tablet excipients were observed. This method showed to be rapid, simple, precise, accurate and economical for determination of nevirapine in pharmaceuticals and it is suitable for routine quality control analysis since CE offers benefits in terms of quicker method development and significantly reduced operating costs.
Resumo:
New fast liquid chromatographic and capillary zone electrophoresis methods were developed and validated for simultaneous determination of atenolol and chlortalidone in combined dose tablets. The reversed phase HPLC method was carried out on a CN LiChrosorb (R) (125 x 4 mm, 5 mu m) column. The CZE method was carried out on an uncoated fused-silica capillary of 30 cm x 75 mu m i.d. with 25 mmol L(-1) sodium tetraborate, pH 9.4. The total analysis time was <6 and <2.5 min for HPLC and CZE methods, respectively. Both methods can be used for stability studies as well.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.