984 resultados para CYLINDROSPERMOPSIS-RACIBORSKII CYANOBACTERIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are an ancient group of gram-negative bacteria with strong genome size variation ranging from 1.6 to 9.1 Mb. Here, we first retrieved all the putative restriction-modification (RM) genes in the draft genome of Spirulina and then performed a range of comparative and bioinformatic analyses on RM genes from unicellular and filamentous cyanobacterial genomes. We have identified 6 gene clusters containing putative Type I RMs and 11 putative Type II RMs or the solitary methyltransferases (MTases). RT-PCR analysis reveals that 6 of 18 MTases are not expressed in Spirulina, whereas one hsdM gene, with a mutated cognate hsdS, was detected to be expressed. Our results indicate that the number of RM genes in filamentous cyanobacteria is significantly higher than in unicellular species, and this expansion of RM systems in filamentous cyanobacteria may be related to their wide range of ecological tolerance. Furthermore, a coevolutionary pattern is found between hsdM and hsdR, with a large number of site pairs positively or negatively correlated, indicating the functional importance of these pairing interactions between their tertiary structures. No evidence for positive selection is found for the majority of RMs, e. g., hsdM, hsdS, hsdR, and Type II restriction endonuclease gene families, while a group of MTases exhibit a remarkable signature of adaptive evolution. Sites and genes identified here to have been under positive selection would provide targets for further research on their structural and functional evaluations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are an ancient group of gram-negative bacteria with strong genome size variation ranging from 1.6 to 9.1 Mb. Here, we first retrieved all the putative restriction-modification (RM) genes in the draft genome of Spirulina and then performed a range of comparative and bioinformatic analyses on RM genes from unicellular and filamentous cyanobacterial genomes. We have identified 6 gene clusters containing putative Type I RMs and 11 putative Type II RMs or the solitary methyltransferases (MTases). RT-PCR analysis reveals that 6 of 18 MTases are not expressed in Spirulina, whereas one hsdM gene, with a mutated cognate hsdS, was detected to be expressed. Our results indicate that the number of RM genes in filamentous cyanobacteria is significantly higher than in unicellular species, and this expansion of RM systems in filamentous cyanobacteria may be related to their wide range of ecological tolerance. Furthermore, a coevolutionary pattern is found between hsdM and hsdR, with a large number of site pairs positively or negatively correlated, indicating the functional importance of these pairing interactions between their tertiary structures. No evidence for positive selection is found for the majority of RMs, e. g., hsdM, hsdS, hsdR, and Type II restriction endonuclease gene families, while a group of MTases exhibit a remarkable signature of adaptive evolution. Sites and genes identified here to have been under positive selection would provide targets for further research on their structural and functional evaluations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker potypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the shortage of phycoerythrin (PE) gene sequences from rhodophytes, peBA encoding beta- and alpha-subunits of PE from three species of red algae (Ceramium boydenn, Halymenia sinensis, and Plocamium telfariae) were cloned and sequenced. Different selection forces have affected the evolution of PE lineages. 8.9 % of the codons were subject to positive selection within the PE lineages (excluding high-irradiance adapted Prochlorococcus). More than 40 % of the sites may be under positive selection, and nearly 20 % sites are weakly constraint sites in high-irradiance adapted Prochlorococcus. Sites most likely undergoing positive selection were found in the chromophore binding domains, suggesting that these sites have played important roles in environmental adaptation during PE diversification. Moreover, the heterogeneous distribution of positively selected sites along the PE gene was revealed from the comparison of low-irradiance adapted Prochlorococcus and marine Synechococcus, which firmly suggests that evolutionary patterns of PEs in these two lineages are significantly different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human epidermal growth factor (hEGF) is a small single-chain polypeptide of 53 amino acid residues. It can stimulate the proliferation of many cell types, mainly those of epidermal and epithelial tissues both in vivo and in vitro. A vector pRL-hEGF was constructed using plasmids pRL-489 and pUC-hEGF. The synthetic hEGF gene was recombined into the downstream of strong promoter psbA in plasmids pRL-489. Then, the vector was introduced into Synechococcus sp. PCC 7002 and Anabaena sp. PCC 7120 by triparental conjugative transfer. The transformation was confirmed by PCR amplification. The pRL-hEGF is thought to be retained as a plasmid form in the transgenic Anabaena sp. PCC 7120, since it can be recovered. However, it has been integrated into the chromosome of Synechococcus sp. PCC 7002 as there is no duplication origin in the pRL-hEGF in this cyanobacterium. and plasmid cannot be isolated from the Synechococcus sp. PCC 7002 either. The radioimmunoassay (RIA) proved that the hEGF gene has been expressed as the protein existed in these two strains of transgenic cyanobacteria, and the hEGF protein in Anabaena sp. PCC 7002 could be secreted into the medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographic and vertical variations of size-fractionated (0.2-1 mu m, 1-10 mu m, and >10 mu m) Chlorophyll a (Chl.a) concentration, cyanobacteria abundance and heterotrophic bacteria abundance were investigated at 13 stations from 4 degrees S, 160 degrees W to 30 degrees N, 140 degrees E in November 1993. The results indicated a geographic distribution pattern of these parameters with instances of high values occurring in the equatorial region and offshore areas, and with instance of low values occurring in the oligotrophic regions where nutrients were almost undetectable. Cyanobacteria showed the highest geographic variation (ranging from 27x10(3) to 16,582x10(3) cell l(-1)), followed by Chl.a (ranging from 0.048 to 0.178 mu g l(-1)), and heterotrophic bacteria (ranging from 2.84x10(3) to 6.50 x 10(5) cell l(-1)). Positive correlations were observed between nutrients and Chl.a abundance. Correspondences of cyanobacteria and heterotrophic bacteria abundances to nutrients were less significant than that of Chl.a. The total Chl.a was accounted for 1.0-30.9%, 35.9-53.7%, and 28.1-57.3% by the >10 mu m, 1-10 mu m and 0.2-1 mu m fractions respectively. Correlation between size-fractionated Chl.a and nutrients suggest that the larger the cell size, the more nutrient-dependent growth and production of the organism. The ratio of pheophytin to chlorophyll implys that more than half of the > 10 mu m and about one third of the 1-10 mu m pigment-containing particles in the oligotrophic region were non-living fragments, while most of the 1-10 mu m fraction was living cells. In the depth profiles, cyanobacteria were distributed mainly in the surface layer, whereas heterotrophic bacteria were abundant from surface to below the euphotic zone. Chl.a peaked at the surface layer (0-20 m) in the equatorial area and at the nitracline (75-100 m) in the oligotrophic regions. Cyanobacteria were not the principle component of the picoplankton. The carbon biomass ratio of heterotroph to phytoplankton was greater than 1 in the eutrophic area and lower than 1 in oligotrophic waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanophages are viruses that infect the cyanobacteria, globally important photosynthetic microorganisms. Cyanophages are considered significant components of microbial communities, playing major roles in influencing host community diversity and primary productivity, terminating cyanobacterial water blooms, and influencing biogeochemical cycles. Cyanophages are ubiquitous in both marine and freshwater systems; however, the majority of molecular research has been biased toward the study of marine cyanophages. In this study, a diagnostic probe was developed to detect freshwater cyanophages in natural waters. Oligonucleotide PCR-based primers were designed to specifically amplify the major capsid protein gene from previously characterized freshwater cyanomyoviruses that are infectious to the filamentous, nitrogen-fixing cyanobacterial genera Anabaena and Nostoc. The primers were also successful in yielding PCR products from mixed virus communities concentrated from water samples collected from freshwater lakes in the United Kingdom. The probes are thought to provide a useful tool for the investigation of cyanophage diversity in freshwater environments.