50 resultados para CYANOTOXINS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência Animal - FMVA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystins (MC) are the most studied toxins of cyanobacteria since they are widely distributed and account for several cases of human and animal poisoning, being potent inhibitors of the serine/threonine protein phosphatases 1 (PP1) and 2A (PP2A). The phosphatases PP1 and PP2A are also present in plants, which may also suffer adverse effects due to the inhibition of these enzymes. In aquatic plants, biomass reduction is usually observed after absorption of cyanotoxins, which can bioaccumulate in its tissues. In terrestrial plants, the effects caused by microcystins vary from inhibition to stimulation as the individuals develop from seedling to adult, and include reduction of protein phosphatases 1 and 2A, oxidative stress, decreased photosynthetic activity and even cell apoptosis, as well as bioaccumulation in plant tissues. Thus, the irrigation of crop plants by water contaminated with microcystins is not only an economic problem but becomes a public health issue because of the possibility of food contamination, and this route of exposure requires careful monitoring by the responsible authorities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigates the use of solar heterogeneous photocatalyis (TiO2) for the destruction of [D-Leu]-Microcystin-LR, powerful toxin of widespread occurrence within cyanobacteria blooms. We extracted [D-Leu]-Microcystin-LR from a culture of Microcystis spp. and used a flat plate glass reactor coated with TiO2 (Degussa, P25) for the degradation studies. The irradiance was measured during the experiments with the aid of a spectroradiometer. After the degradation experiments, toxin concentrations were determined by HPLC and mineralization by TOC analyses. Acute and chronic toxicities were, quantified using mice and phosphatase inhibition in vitro assays, respectively. According to the performed experiments, 150 min were necessary to reduce the toxin concentration to the WHO's guideline for drinking water (from 10 to 1 mu g L-1) and to mineralize 90% of the initial carbon content. Another important finding is that solar heterogeneous photocatalysis was a destructive process indeed, not only for the toxin, but also for the other extract components and degradation products generated. Moreover, toxicity tests using mice have shown that the acute effect caused by the initial sample was removed. However, tests using the phosphatase enzyme indicated that it may be formed products capable of inducing chronic effects on mammals. The performed experiments indicate the feasibility of using solar heterogeneous photocatalysis for treating contaminated water with [D-Leu]-Microcystin-LR, not only due to its destruction, but also to the significant removal of organic matter and acute toxicity that can be achieved. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water pollution caused by toxic cyanobacteria is a problem worldwide, increasing with eutrophication. Due to its biological significance, genotoxicity should be a focus for biomonitoring pollution owing to the increasing complexity of the toxicological environment in which organisms are exposed. Cyanobacteria produce a large number of bioactive compounds, most of which lack toxicological data. Microcystins comprise a class of potent cyclic heptapeptide toxins produced mainly by Microcystis aeruginosa. Other natural products can also be synthesized by cyanobacteria, such as the protease inhibitor, aeruginosin. The hepatotoxicity of microcystins has been well documented, but information on the genotoxic effects of aeruginosins is relatively scarce. In this study, the genotoxicity and ecotoxicity of methanolic extracts from two strains of M. aeruginosa NPLJ-4, containing high levels of microcystin, and M. aeruginosa NPCD-1, with high levels of aeruginosin, were evaluated. Four endpoints, using plant assays in Allium cepa were applied: rootlet growth inhibition, chromosomal aberrations, mitotic divisions, and micronucleus assays. The microcystin content of M. aeruginosa NPLJ-4 was confirmed through ELISA, while M. aeruginosa NPCD-1 did not produce microcystins. The extracts of M. aeruginosa NPLJ-4 were diluted at 0.01, 0.1, 1 and 10 ppb of microcystins: the same procedure was used to dilute M. aeruginosa NPCD-1 used as a parameter for comparison, and water was used as the control. The results demonstrated that both strains inhibited root growth and induced rootlet abnormalities. The strain rich in aeruginosin was more genotoxic, altering the cell cycle, while microcystins were more mitogenic. These findings indicate the need for future research on non-microcystin producing cyanobacterial strains. Understanding the genotoxicity of M. aeruginosa extracts can help determine a possible link between contamination by aquatic cyanobacteria and high risk of primary liver cancer found in some areas as well as establish water level limits for compounds not yet studied. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the effects of an anatoxin-a(s)-containing extract on a cockroach semi-isolated heart preparation and the results supporting the extract s biological activity on acetylcholinesterase (purified from ell). The presence of the toxin in cyanobacterial strains Anabaena spiroides (ITEP-024, ITEP-025 and ITEP-026) isolated from the Tapacurá reservoir in Pernambuco, Brazil, was confirmed by means of liquid chromatography coupled to an ion-trap mass spectrometer. The anticholinesterase activity was assessed biochemically by the Ellman test and was confirmed by measuring the cockroach s heart rate. The concentration of the extract containing the tested anatoxin-a(s) (antx-a(s)) (10, 16 and 100 μg.μL-1) inhibited the eel acetylcholinesterase (AChE) by more than 90%. The cockroach cardiac frequency increased by a maximum of about 20% within 29 min after the addition of 2.5x10³ μg of extract containing antxa (s).g-1 bw (n=9, p<0.05). Our results strongly indicate that antx-a(s) is capable of exerting biological effects on cockroach, indicating that more research might be conducted to determine its role in the environment, especially on insects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Case studies and anecdotal reports have documented a range of acute illnesses associated with exposure to cyanobacteria and their toxins in recreational waters. The epidemiological data to date are limited; we sought to improve on the design of some previously conducted studies in order to facilitate revision and refinement of guidelines for exposure to cyanobacteria in recreational waters. Methods: A prospective cohort study was conducted to investigate the incidence of acute symptoms in individuals exposed, through recreational activities, to low ( cell surface area < 2.4 mm(2)/mL), medium ( 2.4 - 12.0 mm(2)/mL) and high (> 12.0 mm(2)/mL) levels of cyanobacteria in lakes and rivers in southeast Queensland, the central coast area of New South Wales, and northeast and central Florida. Multivariable logistic regression analyses were employed; models adjusted for region, age, smoking, prior history of asthma, hay fever or skin disease ( eczema or dermatitis) and clustering by household. Results: Of individuals approached, 3,595 met the eligibility criteria, 3,193 (89%) agreed to participate and 1,331 (37%) completed both the questionnaire and follow-up interview. Respiratory symptoms were 2.1 (95% CI: 1.1 - 4.0) times more likely to be reported by subjects exposed to high levels of cyanobacteria than by those exposed to low levels. Similarly, when grouping all reported symptoms, individuals exposed to high levels of cyanobacteria were 1.7 ( 95% CI: 1.0 - 2.8) times more likely to report symptoms than their low-level cyanobacteria-exposed counterparts. Conclusion: A significant increase in reporting of minor self-limiting symptoms, particularly respiratory symptoms, was associated with exposure to higher levels of cyanobacteria of mixed genera. We suggest that exposure to cyanobacteria based on total cell surface area above 12 mm(2)/mL could result in increased incidence of symptoms. The potential for severe, life-threatening cyanobacteria-related illness is likely to be greater in recreational waters that have significant levels of cyanobacterial toxins, so future epidemiological investigations should be directed towards recreational exposure to cyanotoxins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Florações de cianobactérias nocivas ocorrem frequentemente em reservatórios brasileiros, devido ao incremento de nutrientes pela eutrofização e pelas mudanças climáticas, como o aquecimento global. Estas florações alteram a qualidade dos corpos hídricos, produzindo compostos de gosto e odor e cianotoxinas, que representam um problema para as Estações de Tratamento de Água (ETAs). Estes compostos, quando dissolvidos na água dificultam os tratamentos convencionais. Além das cianobacérias, um dinoflagelado exótico tem ocorrido em águas doces brasileiras, incluindo reservatórios utilizados para o abastecimento público. Os reservatórios de Caxias do Sul (RS – Brasil) são gerenciados pelo Serviço Autônomo Municipal de Água e Esgoto (SAMAE) e apresentam um histórico de florações de cianobactérias nocivas, como Dolichospermum Bory de Saint-Vincent ex Bornet & Flahault e Microcystis (Kützing) ex Lemmermann, dentre outras. Além disso, desde 2012, tem ocorrido nestes reservatórios florações de Ceratium furcoides. Este organismo quando em extensas florações tem sido relacionado à perda da qualidade dos corpos hídricos. O reservatório Maestra foi construído entre os anos de 1965-1970 e abastece 22% da população de Caxias do Sul. Este reservatório fornece água para a ETA Celeste Gobatto, que utiliza o método convencional de tratamento da água. Este trabalho esta estruturado em três capítulos. O primeiro consiste de uma revisão bibliográfica de assuntos relavantes acerca do histórico do monitoramento da qualidade dos reservatórios no Brasil, da biologia de algas e cianobactérias, e as principais cianotixinas e acidentes devido à intoxicação no Brasil. Além disso, é feita uma breve revisão sobre o tratamento convencional da água, mostrando a importância de cada etapa para a remoção das impurezas, de acordo com os padrões de potabilidade da Portaria 2914. O segundo capítulo é manuscrito na forma de artigo científico intítulado “Composição de algas, cianobactérias e cianotoxinas no reservatório Maestra – Caxias do Sul, RS – Brasil”. Este estudo foi realizado entre janeiro de 2012 a abril de 2013. O terceiro capítulo consta de um manuscrito na forma de artigo científico, intitulado “Efeito do tratamento de água convencional na remoção de algas, cianobactérias e cianotoxinas em uma Estação de Tratamento de Água Convencional”. A eficiência de remoção foi avaliada em escala piloto, em uma Estação de Tratamento de Água de Caxias do Sul – RS a qual utiliza o método convencional de tratamento.