784 resultados para CVD diamond film


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lithographic method was used to produce polycrystalline diamond films having highly defined surface geometry, showing an array of diamond tips for possible application as a field emitter device. The films grown in this study used microwave plasma assisted chemical vapour deposition (MACVD) on a silicon substrate; the substrate was then dissolved away to reveal the surface features on the diamond film. It is possible to align the crystallite direction and affect the electron emission properties using a voltage bias to enhance the nucleation process and influence the nuclei to a preferred orientation. This study focuses on the identification of the distribution of crystal directions in the film, using electron backscattering diffraction (EBSD) to identify the crystallographic character of the film surface. EBSD allows direct examination of the individual diamond grains, grains boundaries and the crystal orientation of each individual crystallite. The EBSD maps of the bottom (nucleation side) of the films, following which a layer of film is ion-milled away and the mapping process repeated. The method demonstrates experimentally that oriented nucleation occurs and the thin sections allow the crystal texture to be reconstructed in 3-D. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H 2/CH 4, in which the flow ratio of CH 4 to H 2 (FCH4/FH2) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the pineapple-like morphology and the cauliflower-like morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH 4 to H 2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the pineapple-like films whilst there were ultrananocrystalline grains within cauliflower-like films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the cauliflower-like films whilst (100) crystalline plane was the dominant surface in the pineapple-like films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tribological response of multilayer micro/nanocrystalline diamond coatings grown by the hot filament CVD technique is investigated. These multigrade systems were tailored to comprise a starting microcrystalline diamond (MCD) layer with high adhesion to a silicon nitride (Si3N4) ceramic substrate, and a top nanocrystalline diamond (NCD) layer with reduced surface roughness. Tribological tests were carried out with a reciprocating sliding configuration without lubrication. Such composite coatings exhibit a superior critical load before delamination (130–200 N), when compared to the mono- (60–100 N) and bilayer coatings (110 N), considering ∼10 µm thick films. Regarding the friction behaviour, a short-lived initial high friction coefficient was followed by low friction regimes (friction coefficients between 0.02 and 0.09) as a result of the polished surfaces tailored by the tribological solicitation. Very mild to mild wear regimes (wear coefficient values between 4.1×10−8 and 7.7×10−7 mm3 N−1 m−1) governed the wear performance of the self-mated multilayer coatings when subjected to high-load short-term tests (60–200 N; 2 h; 86 m) and medium-load endurance tests (60 N; 16 h; 691 m).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The aim of this study was to compare the microtensile bond strength of three adhesive systems, using different methods of dentin preparation. Materials and methods: A hundred and eight bovine teeth were used. The dentin from buccal face was exposed and prepared with three different methods, divided in 3 groups: Group 1 (DT)- diamond tip on a high-speed handpiece; Group 2 (CVD)-CVD tip on a ultrasonic handpiece; Group 3 (LA)-Er: YAG laser. The teeth were divided into 3 subgroups, according adhesive systems used: Subgroup 1-Adper Single Bond Plus/3M ESPE (SB) total-etch adhesive; Subgroup 2-Adper Scotchbond SE/3M ESPE (AS) selfetching adhesive; Subgroup 3-Clearfil SE Bond/Kuraray (CS) selfetching adhesive. Blocks of composite (Filtek Z250-3M ESPE) 4 mm high were built up and specimens were stored in deionized water for 24 hours at 37°C. Serial mesiodistal and buccolingual cuts were made and stick-like specimens were obtained, with transversal section of 1.0 mm2. The samples were submitted to microtensile test at 1 mm/min and load of 10 kg in a universal testing machine. Data (MPa) were subjected to ANOVA and Tukey's tests (p < 0.05). Results and conclusion: Surface treatment with Diamond or CVD tips associated with Clearfil SE Bond adhesive produced significantly lower bond strength values compared to other groups. Surface treatment with Er: YAG laser associated with Single Bond Plus or Clearfil SE Bond adhesives and surface treatment with CVD tip associated with Adper Scotchbond SE adhesive produced significantly lower bond strength values compared to surface treatment with diamond or CVD tips associated with Single Bond Plus or Adper Scotchbond SE adhesives. Clinical significance: Interactions between laser and the CVD tip technologies and the different adhesive systems can produce a satisfactory bonding strength result, so that these associations may be beneficial and enhance the clinical outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissipadores de calor recobertos com filmes de diamante CVD foram desenvolvidos para acoplar a semicondutores, utilizando-se do Laboratório de Deposição de Filmes de Diamante CVD, na UNESP - Campus de Guaratinguetá e o Laboratório de Diamantes da Universidade São Francisco, em Itatiba, SP. Analisou-se o filme de diamante CVD sobre o silício, para emprego como dissipador de calor, porque o filme de diamante CVD pode ter o valor da condutividade térmica até cinco vezes superior ao do cobre e de dez vezes a do alumínio. Os filmes foram obtidos via deposição através de reator de filamento quente, trabalhando-se com vários filamentos retilíneos em paralelo, resultando assim em um processo que visou obter um filme mais uniforme e com grande área de deposição. Os dados para análises da composição química superficial dos filmes foram obtidos por Difração de Raios-X, Dispersão de Energia de Raios-X e para a verificação da morfologia e espessura do filme foi utilizada a Microscopia Eletrônica de Varredura. Para a verificação do comportamento da temperatura sobre o dissipador com o filme de diamante CVD foi utilizada uma câmera de imagem termográfica, marca Fluke, modelo Ti 40 FT. Foram obtidos filmes de 2 e 10 ?m sobre o silício. Estas espessuras ainda não oferecem um desempenho mecânico que o torne autosustentado. Do ponto de vista de desempenho térmico as análises mostraram que, mesmo com pequena espessura, o filme de diamante CVD apresentou bom resultado experimental. Os principais desafios de construção para esse dissipador de calor são a obtenção do filme com espessura acima de um mm e a garantia da qualidade do filme com a repetitividade do processo em cujo caso torna-se necessário definir as dimensões do dissipador antes da deposição do filme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two polycrystalline diamond surfaces, manufactured by chemical vapour deposition (CVD) technique, are investigated regarding their applicability as charge state conversion surfaces (CS) for use in a low energy neutral atom imaging instrument in space research. The capability of the surfaces for converting neutral atoms into negative ions via surface ionisation processes was measured for hydrogen and oxygen with particle energies in the range from 100 eV to 1 keV and for angles of incidence between 6 deg and 15 deg. We observed surface charging during the surface ionisation processes for one of the CVD samples due to low electrical conductivity of the material. Measurements on the other CVD diamond sample resulted in ionisation efficiencies of ~2 % for H and up to 12 % for O. Analysis of the angular scattering revealed very narrow and almost circular scattering distributions. Comparison of the results with the data of the CS of the IBEX-Lo sensor shows that CVD diamond has great potential as CS material for future space missions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical characteristics of CVD-diamond/n(+)-Si heterojunction devices are reported. Below 250 K the diodes show an unusual inversion of their rectification properties. This behavior is attributed to an enhanced tunneling component due to interface states, which change their occupation with the applied bias. The temperature dependence of the loss tangent shows two relaxation processes with different activation energies. These processes are likely related with two parallel charge transport mechanisms, one through the diamond grain, and the other through the grain boundary. (C) 2001 Elsevier Science B.V. Ah rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work metal - Microwave Plasma CVD diamond Schottky devices were studied. The current density vs. applied voltage reveals rectification ratios up to 10(4) at \ +/- 2V \. Under illumination an inversion and increase of the rectification is observed. The carrier density is 10(15) cm(-3) and the ideality factors near 1.5. The dark current vs. temperature shows that below 150 K the bulk transport is controlled by a hopping process with a density of defects of 10(16) cm(-3). For higher temperatures an extrinsic ionisation with activation energy of 0.3 eV takes place. The correlation with the polycrystalline nature of the samples is focused.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work metal - Microwave Plasma CVD diamond Schottky devices were studied. The current density vs. applied voltage reveals rectification ratios up to 10(4) at \ +/- 2V \. Under illumination an inversion and increase of the rectification is observed. The carrier density is 10(15) cm(-3) and the ideality factors near 1.5. The dark current vs. temperature shows that below 150 K the bulk transport is controlled by a hopping process with a density of defects of 10(16) cm(-3). For higher temperatures an extrinsic ionisation with activation energy of 0.3 eV takes place. The correlation with the polycrystalline nature of the samples is focused.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical activation and physical degradation of boron-doped diamond (BDD) electrodes with different boron doping levels after repeated cathodic pretreatments are reported. Galvanostatic cathodic pretreatment passing up to -14000 C cm(-2) in steps of -600 C cm(-2) using -1 A cm(-2) caused significant physical degradation of the BDD surface, with film detachment in some areas. Because of this degradation, a great increase in the electrochemically active area was observed in Tafel plots for the hydrogen evolution reaction (HER) in acid media. The minimum cathodic pretreatment needed for the electrochemical activation of the BDD electrodes without producing any observable physical degradation on the BDD surfaces was determined using electrochemical impedance spectroscopy (EIS) measurements and cyclic voltammetry: -9 C cm(-2), passed at -1 A cm(-2). This optimized cathodic pretreatment can be safely used when electrochemical experiments are carried out on BDD electrodes with doping levels in the range between 800 and 8000 ppm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to compare the micromorphology of CVD diamond tips coupled to ultrasound with conventional high speed diamond tips after cavity preparations, and to measure the width and depth of the cavities obtained. Two hundred bovine teeth were divided into 20 subgroups. Each of the diamond tips (10 CVD and 10 conventional) were used to prepare 10 standardized cavities, using an apparatus that controlled the time (t: 27 s), speed (5.3 mm/s) and load (0.012 KGF) of the tip against the teeth during preparation. The unused and the used (after one, five and 10 preparations) tips were analyzed by scanning electronic microscopy. The images were randomly assessed by 3 examiners with regard to the presence or absence of micromorphologic alterations. Cavity measurements were made after visualization under a stereoscopic microscope. Cavity widths and depths were analyzed by the ANOVA Factorial test (p < 0.05). The CVD diamond tips presented less wear than the conventional tips after all the cavity preparations performed, but produced shallower cavities that were equivalent in width to those made by conventional tips after the fifth preparation. CVD diamond tips may be suggested as an alternative to conventional diamond tips due to their conservative preparation and greater longevity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the cutting ability of chemical vapor deposition (CVD) diamond burs coupled to an ultrasonic dental unit handpiece for minimally invasive cavity preparation. One standard cavity was prepared on the mesial and distal surfaces of 40 extracted human third molars either with cylindrical or with spherical CVD burs. The cutting ability was compared regarding type of substrate (enamel and dentin) and direction of handpiece motion. The morphological characteristics, width and depth of the cavities were analyzed and measured using scanning electron micrographs. Statistical analysis using the Kruskal-Wallis test (p < 0.05) revealed that the width and depth of the cavities were significantly greater when they were prepared on dentin. Wider cavities were prepared when the cylindrical CVD bur was used, and deeper cavities resulted from preparation with the spherical CVD bur. The direction of handpiece motion did not influence the size of the cavities, and the CVD burs produced precise and conservative cutting.