273 resultados para CUCUMBER
Resumo:
The stereoselectivity of hydroxylation of alkyltetrahydropyran-2-ols (or their biological equivalents) in the formation of stereoisomers of 2,8-dimethyl-1,7-dioxaspiro[5.5]undecanes in male Bactrocera cucumis has been investigated. Racemic, (6R)-, and (6S)-6-methyl-2-[5-H-2(1)]-n-pentyltetrahydropyran-2-ol was administered under an [O-18(2)]-enriched atmosphere. The stereochemistry and isotopic composition of generated spiroacetals were monitored by combined enantioselective GC-MS. The monooxygenase(s) strongly prefers the (6S)-substrate and furnishes predominantly the (S)-alcohol and then the (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. The (2S,6S,8R) and (2R,6S,8S) (E,Z)-isomers appear to be derived in vivo predominantly from (R)-hydroxylation of the (6S)-tetrahydropyranol.
Resumo:
The objective of this work was to evaluate the quality of fruits and the nutritional status of cucumber CV. Aodai cultivated in nutrient solutions with different N:K ratios. The hydroponic cultivation was initially performed, during the vegetative growth, in nutrient solution with 1:2.0 mmol L-1 N:K, and, later, during fruit setting, in four different nutrient solutions with N:K (w/w) at the ratios 1:1.4, 1:1.7, 1:2.0 and 1:2.5. An additional treatment with a nutrient solution containing the ratio 1:2.2 (w/w) N:K during the vegetative growth and N:K 1:1.4 (w/w) during fruit setting, both with 10% ammonium (NH4+) was included. The treatments were arranged in a randomized design with six replicates. Irrigation was carried out with deionized water until seed germination, and then with nutrient solution until 30 days after germination, when plants were transplanted. Plants in the hydroponic growing beds were irrigated with the solutions for vegetative growth, and, after 21 days, the solutions were replaced by solutions for fruit setting. At 45 and 60 days after transplanting, the fresh weight, length, diameter, volume and firmness of the fruit were evaluated, and, at 45 days after transplanting, the macronutrient concentrations in the leaves were determined. The use of different N:K ratios during fruit setting influenced the cucumber production. The ratio of 1.0:1.7 N: K (w/w), with 10% of N in the form of ammonia, is recommended for the whole cycle.
Resumo:
Pseudomonas fluorescens strain CHA0 is an effective biocontrol agent of various soilborne pathogens. It controls damping-off or root rot caused byPythium ultimum on cucumber, wheat and cress. Strain CHA0 synthesizes several antibiotic metabolites such as hydrogen cyanide, 2,4-diacetylphloroglucinol, and pyoluteorin. The role of pyoluteorin in the suppression of damping-off was investigated. Two Tn5 mutants (CHA660 and CHA661) of strain CHA0 were isolated which had lost the capacity to produce pyoluteorin but still produced 2,4-diacteylphloroglucinol and HCN. These mutants still inhibitedP. ultimum on malt agar (which favours the production of 2,4-diacetylphloroglucinol) but had partially lost the ability to inhibit this pathogen on King's B agar (which favours the production of pyoluteorin). The two pyoluteorin-negative mutants showed a reduced capacity to suppress damping-off of cress caused byP. ultimum but were as effective in the protection of cucumber against this pathogen as the wild-type strain. These results indicate that, depending on the plant, pyoluteorin production plays a role in the suppression of damping-off by strain CHA0 without being a major mechanism in disease suppression. We suggest that the contribution of pyoluteorin to the biocontrol activity of strain CHA0 is determined by the quantity of this antibiotic produced in the rhizosphere, which might depend on the root exudates of the host plant.
Resumo:
The biocontrol strain CHA0 of Pseudomonas fluorescens produces small amounts of indole-3-acetic acid via the tryptophan side chain oxidase and the tryptophan transaminase pathways. A recombinant plasmid (pME3468) expressing the tryptophan monooxygenase pathway was introduced into strain CHA0; this resulted in elevated synthesis of indole-3-acetic acid in vitro, especially after addition of -tryptophan. In natural soil, strain CHA0/pME3468 increased fresh root weight of cucumber by 17-36%, compared to the effect of strain CHA0; root colonization was about 106 cells per g of root. However, both strains gave similar protection of cucumber against Pythium ultimum. In autoclaved soil, at 6×107 cells per g of root, strain CHA0 stimulated growth of roots and shoots, whereas strain CHA0/pME3468 caused root stunting and strong reduction of plant weight. These results are in agreement with the known effects of exogenous indole-3-acetic acid on plant roots and suggest that in the system examined, indole-3-acetic acid does not contribute to the biocontrol properties of strain CHA0.
Resumo:
Information on the effects of released wild-type or genetically engineered bacteria on resident bacterial communities is important to assess the potential risks associated with the introduction of these organisms into agroecosystems. The rifampicin-resistant biocontrol strain Pseudomonas fluorescens CHA0-Rif and its derivative CHA0-Rif/pME3424, which has improved biocontrol activity and enhanced production of the antibiotics 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt), were introduced into soil microcosms and the culturable bacterial community developing on cucumber roots was investigated 10 and 52 days later. The introduction of either of the two strains led to a transiently enhanced metabolic activity of the bacterial community on glucose dimers and polymers as measured with BIOLOG GN plates, but natural succession between the two sampling dates changed the metabolic activity of the bacterial community more than did the inoculants. The introduced strains did not significantly affect the abundance of dominant genotypic groups of culturable bacteria discriminated by restriction analysis of amplified 16S rDNA of 2500 individual isolates. About 30-50% of the resident bacteria were very sensitive to Phl and Plt, but neither the wild-type nor CHA0-Rif/pME3424 changed the proportion of sensitive and resistant bacteria in situ. In microcosms with a synthetic bacterial community, both biocontrol strains reduced the population of a strain of Pseudomonas but did not affect the abundance of four other bacterial strains including two highly antibiotic-sensitive isolates. We conclude that detectable perturbations in the metabolic activity of the resident bacterial community caused by the biocontrol strain CHA0-Rif are (i) transient, (ii) similar for the genetically improved derivative CHA0-Rif/pME3424 and (iii) less pronounced than changes in the community structure during plant growth.
Resumo:
The objective of this work was to evaluate the dependence of cucumber (Cucumis sativus L.) seedlings on cotyledonary leaves for early growth and establishment. Sets of two uniform emerging seedlings were used to quantify the initial growth and dry matter accumulation, as well as the intensity and stage of cotyledon damage in seedling establishment and to determine cotyledon protein, amino acid and carbohydrate contributions to the growing seedling. Cucumber seedling establishment was found to be highly dependent on cotyledonary leaves. Root system establishment was highly dependent on the health of the aerial part. One cotyledon was enough to maintain aerial growth of seedlings after unfolding the first true leaf. Cucumber seedlings depended on both cotyledons to keep root system growth at least until leaf area was equivalent to cotyledon area. Covering one or both cotyledons of seedlings with one unfolded leaf increased carbohydrate content of uncovered cotyledon and leaves compared with control seedlings. Cucumber seedlings are highly dependent on cotyledonary leaves and aerial parts are less dependent than root system. Cotyledon damage at early stages of plant establishment would adversely impact crop yield by reducing plant density, an important yield component, or slowing down seedling growth and establishment.
Resumo:
The objective of this work was to determine the effects of rainfall, temperature, predators, parasitoids, plant age, leaf chemical composition, levels of leaf nitrogen and potassium, besides density of leaf trichomes, on attack intensity of Bemisia tabaci biotype B on the Cucumis sativus. An increase in the number of whitefly adults and nymphs per leaf was observed with plant aging. A higher number of whitefly adults per leaf and eggs cm-2 was verified in the apical part than in the middle and bottom part of the plants canopy. However, the higher number of whitefly nymphs was observed in the mid-part than in the apical and bottom part of the plant canopy. The incidence of whitefly nymphs was negatively affected with foliar nitrogen. Pentacosane and octacosane positively affected whitefly adults and the first compound also affected the nymphs of this pest species.
Resumo:
The objective of this work was to visualize the association between microcracking and other epidermal chilling injury symptoms, and to identify rots in cucumber fruit (Cucumis sativus L.) by scanning electron microscopy (SEM). Depressed epidermal areas and surface cracking due to damages of subepidermal cells characterized the onset of pitting in cucumber fruit. The germination of conidia of Alternaria alternata, with some of them evident on the fractures in the cultivar Trópico, occurred after damaging on the epidermis. Before, the chilling injury symptoms became visible, Stemphylium herbarum conidia germinated, and mycelium penetrated through the hypodermis using the microcracks as pathway. In the cultivar Perichán 121 the fungus was identified as Botrytis cinerea.
Resumo:
The main objective of this work was to investigate the ability of Aphis gossypii and Myzus persicae to transmit Cucumber mosaic virus (CMV) singly and mixed with two potyviruses (Papaya ringspot virus - type W, PRSV-W and Zucchini yellow mosaic virus, ZYMV), to zucchini squash plants (Cucurbita pepo). The results showed that the potyviruses in general were more efficiently transmitted by both species of aphids as compared to CMV. The transmission of PRSV-W, ZYMV and CMV separately was more efficient than in mixture.
Resumo:
Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade) is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses. One sample showed mixed infection between Cucumber mosaic virus (CMV) and Potato virus Y (PVY) and one sample showed simple infection by PVY. Both virus species were transmitted by plant extract and caused mosaic in tomato (Solanum lycopersicum cv. Santa Clara), sweet pepper (Capsicum annuum cv. Magda), Nicotiana benthamiana and N. tabaccum TNN, and local lesions on Chenopodium quinoa, C. murale and C. amaranticolor. The coat protein sequences for CMV and PVY found in S. americanum are phylogenetically more related to isolates from tomato. We conclude that S. americanum can act as a reservoir for different viruses during and between sweet pepper crop seasons.
Resumo:
The experiment was performed in the experimental area of the Engineering Department Federal University of Lavras, Minas Gerais State, Brazil. It aimed at identifying the adequate irrigation management of the greenhouse-cultivated Japanese cucumber (Cucumis sativus L.). complete randomized design, with four levels of soil water potential (15; 30; 60 e 120 kPa) at two phenological phases (vegetative and reproductive), and 5 replications. Overall, the results showed decrease of yield according to increase of soil water potentials. During the reproductive stage, Japanese cucumber plants were more sensitive to water deficit, resulting in further decrease in yield compared to applied water deficit during the vegetative stage of the culture.
Resumo:
Culture environments, trays and doses of organic compost were evaluated in the formation of cucumber seedlings (Cucumis sativus L.). Five environmental conditions were tested: (A1) a greenhouse with height of 2.5 m, covered with polyethylene film, (A2) nursery with height of 2.5 m, monofilament fabric, 50% shading, (A3) nursery with height of 2.5 m, heat-reflective screen, 50% shading, (A4) nursery with a height of 1.8 m, covered with coconut tree straw and (A5) greenhouse with height of 4.0 m, covered with polyethylene film, with zenith opening and thermo-reflective cloth under the plastic. Trays of 72 (R1) and 128 (R2) cells were filled with 93% soil and 7% organic compound (S1), 86% soil and 14% organic compound (S2) and 79% soil and 21% organic compound (S3). It was used a randomized design in split-split-plot scheme, with five replicates (environments x trays x substrates). The greenhouses provide the best environments for the formation of cucumber seedlings. A tray of 72 cells is the best container, promoting more vigorous seedlings in substrate with soil and 7 or 14% organic compound.
Resumo:
The interaction of the product of H2O2 and (PhSe)2 with delta-aminolevulinate dehydratase (delta-ALA-D) from mammals and plants was investigated. (PhSe)2 inhibited rat hepatic delta-ALA-D with an IC50 of 10 µM but not the enzyme from cucumber leaves. The reaction of (PhSe)2 with H2O2 for 1 h increased the inhibitory potency of the original compound and the IC50 for animal delta-ALA-D inhibition was decreased from 10 to 2 µM. delta-ALA-D from cucumber leaves was also inhibited by the products of reaction of (PhSe)2 with H2O2 with an IC50 of 4 µM. The major product of reaction of (PhSe)2 with H2O2 was identified as seleninic acid and produced an intermediate with a lambdamax at 265 nm after reaction with t-BuSH. These results suggest that the interaction of (PhSe)2 with mammal delta-ALA-D requires the presence of cysteinyl residues in close proximity. Two cysteine residues in spatial proximity have been recently described for the mammalian enzyme. Analysis of the primary structure of plant delta-ALA-D did not reveal an analogous site. In contrast to (PhSe)2, seleninic acid, as a result of the higher electrophilic nature of its selenium atom, may react with additional cysteinyl residue(s) in mammalian delta-ALA-D and also with cysteinyl residues from cucumber leaves located at a site distinct from that found at the B and A sites in mammals. Although the interaction of organochalcogens with H2O2 may have some antioxidant properties, the formation of seleninic acid as a product of this reaction may increase the toxicity of organic chalcogens such as (PhSe)2.
Resumo:
The software Seed Vigor Imaging System (SVIS®), has been successfully used to evaluate seed physiological potential by automated analyses of scanned seedlings. In this research, the efficiency of this system was compared to other tests accepted for assessing cucumber (Cucumis sativus L.) seed vigor of distinct seed lots of Supremo and Safira cultivars. Seeds were subjected to germination, traditional and saturated salt accelerated aging, seedling emergence, seedling length and SVIS analyses (determination of vigor indices and seedling growth uniformity, lengths of primary root, hypocotyl and whole seedlings). It was also determined whether the definition of seedling growth/uniformity ratios affects the sensitivity of the SVIS®. Results showed that analyses SVIS have provided consistent identification of seed lots performance, and have produced information comparable to those from recommended seed vigor tests, thus demonstrating a suitable sensitivity for a rapid and objective evaluation of physiological potential of cucumber seeds. Analyses of four-days-old cucumber seedlings using the SVIS® are more accurate and growth/uniformity does not affect the precision of results.