933 resultados para CRUCIAL ROLE
Resumo:
Oxygen atoms in the middle Cu---O layer of YBa2Cu3O7 consisting of strings of corner-connected (CuO4)∞ units are shown to be crucial for superconductivity. Importance of hole-hole pairing giving rise to O---O bonds is also indicated.
Resumo:
There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature its well as from the research work of my group.
Crucial Role of Antioxidant Proteins and Hydrolytic Enzymes in Pathogenicity of Penicillium expansum
Resumo:
A series of five Ni(II)-complexes containing the same tridentate Schiff base but different monoanionic ligands (N-3(-), NO3-, PhCOO- and NO2-)reveals that the competitive as well as the cooperative role of the monoanions and phenoxo group in bridging the metal ions play the key role in the variation of molecular architecture.
Resumo:
Interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, and IL-6 have been established as important mediators of fever induced by lipopolysaccharide (LPS) from Gram-negative bacteria. Whether these pro-inflammatory cytokines are also important in mediating fever induced by live bacteria remains less certain. We therefore investigated the following: (1) the synthesis of TNF-alpha, IL-1 beta, and IL-6 during E. coli-induced fever and (2) the effect of blocking the action of cytokines within the brain on E. coli-induced fever. Body or tail skin temperature (bT or Tsk, respectively) was measured by biotelemetry or telethermometry, every 30 min, during 6 or 24 h. Depending on the number of colony-forming units (CFU) injected i.p., administration of E. coli induced a long-lasting increase in bT of male Wistar rats. The duration of fever did not correlate with the number of CFU found in peritoneal cavity or blood. Because 2.5 x 10(8) CFU induced a sustained fever without inducing a state of sepsis/severe infection, this dose was used in subsequent experiments. The E. coli-induced increase in bT was preceded by a decrease in Tsk, reflecting a thermoregulatory response. TNF-alpha, IL-1 beta, and IL-6 were detected at 3 h in serum of animals injected i.p. with E. coli. In the peritoneal exudates, TNF-alpha, IL-1 beta, and IL-6 were detected at 0.5 and 3 h after E. coli administration. Moreover, both IL-1 beta and IL-6, but not TNF-alpha, were found in the cerebrospinal fluid (CSF) and hypothalamus of animals injected with E. coli. Although pre-treatment (i.c.v., 2 mu l, 15 min before) with anti-IL-6 antibody (anti-IL-6, 5 mu g) reduced E. coli-induced fever, pre-treatment with either IL-1 receptor antagonist (IL-1ra, 200 mu g) or soluble TNF receptor I (sTNFRI, 500 ng) had no effect on the fever response. In conclusion, replicating E. coli promotes an integrated thermoregulatory response in which the central action of IL-6, but not IL-1 and TNF, appears to be important.
Resumo:
Starch is the major source of food glucose and its digestion requires small intestinal alpha-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in alpha-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal alpha-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of (13)C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced alpha-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal alpha-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis.
Resumo:
Foot-and-mouth disease (FMD) is a highly contagious disease that caused several large outbreaks in Europe in the last century. The last important outbreak in Switzerland took place in 1965/66 and affected more than 900 premises and more than 50,000 animals were slaughtered. Large-scale emergency vaccination of the cattle and pig population has been applied to control the epidemic. In recent years, many studies have used infectious disease models to assess the impact of different disease control measures, including models developed for diseases exotic for the specific region of interest. Often, the absence of real outbreak data makes a validation of such models impossible. This study aimed to evaluate whether a spatial, stochastic simulation model (the Davis Animal Disease Simulation model) can predict the course of a Swiss FMD epidemic based on the available historic input data on population structure, contact rates, epidemiology of the virus, and quality of the vaccine. In addition, the potential outcome of the 1965/66 FMD epidemic without application of vaccination was investigated. Comparing the model outcomes to reality, only the largest 10% of the simulated outbreaks approximated the number of animals being culled. However, the simulation model highly overestimated the number of culled premises. While the outbreak duration could not be well reproduced by the model compared to the 1965/66 epidemic, it was able to accurately estimate the size of the area infected. Without application of vaccination, the model predicted a much higher mean number of culled animals than with vaccination, demonstrating that vaccination was likely crucial in disease control for the Swiss FMD outbreak in 1965/66. The study demonstrated the feasibility to analyze historical outbreak data with modern analytical tools. However, it also confirmed that predicted epidemics from a most carefully parameterized model cannot integrate all eventualities of a real epidemic. Therefore, decision makers need to be aware that infectious disease models are useful tools to support the decision-making process but their results are not equal valuable as real observations and should always be interpreted with caution.
Resumo:
Both reversible and irreversible inhibition of mitochondrial respiration have been reported following the generation of nitric oxide (NO) by cells. Using J774 cells, we have studied the effect of long-term exposure to NO on different enzymes of the respiratory chain. Our results show that, although NO inhibits complex IV in a way that is always reversible, prolonged exposure to NO results in a gradual and persistent inhibition of complex I that is concomitant with a reduction in the intracellular concentration of reduced glutathione. This inhibition appears to result from S-nitrosylation of critical thiols in the enzyme complex because it can be immediately reversed by exposing the cells to high intensity light or by replenishment of intracellular reduced glutathione. Furthermore, decreasing the concentration of reduced glutathione accelerates the process of persistent inhibition. Our results suggest that, although NO may regulate cell respiration physiologically by its action on complex IV, long-term exposure to NO leads to persistent inhibition of complex I and potentially to cell pathology.
Resumo:
Macrophages are considered to be the mediators of resistance to extra-intestinal Salmonella infections. Nevertheless, the initial cellular response to Salmonella infections consists primarily of polymorphonuclear leukocytes (PMN). To determine whether PMN serve an important function for the infected host, we made mice neutropenic with the rat mAb to RB6–8C5 and infected them i.v. with ≈103 Salmonella dublin or an isogenic derivative that lacks the virulence plasmid (LD842). We infected BALB/c mice, which have a point mutation in the macrophage-expressed gene Nramp1 that makes them susceptible to Salmonella, and BALB/c.D2 congenic mice, which have the wild-type Nramp1 gene that makes them resistant to Salmonella. Both mouse strains were resistant to LD842, and neutropenia made only the BALB/c strain susceptible to this infection. Neutropenic congenic mice, however, were susceptible only to wild-type S. dublin (plasmid+). These results show a complex interplay between plasmid-virulence genes in Salmonella, host macrophages, and PMN. Mice with normal macrophages need PMN to defend against nontyphoid Salmonella that carry a virulence plasmid but not against Salmonella without virulence plasmids. Mice with a mutant Nramp1 gene need PMN to defend against all Salmonella, even those that lack virulence plasmids. These results, plus the evidence that PMN kill Salmonella efficiently in vitro, suggest that Salmonella have adapted to grow inside macrophages where they are relatively sheltered from PMN. The adaptations that allow Salmonella to survive in macrophages do not protect them from PMN.
Resumo:
The inhibition of β-galactosidase expression in a medium containing both glucose and lactose is a typical example of the glucose effect in Escherichia coli. We studied the glucose effect in the lacL8UV5 promoter mutant, which is independent of cAMP and cAMP receptor protein (CRP). A strong inhibition of β-galactosidase expression by glucose and a diauxic growth were observed when the lacL8UV5 cells were grown on a glucose–lactose medium. The addition of isopropyl β-d-thiogalactoside to the culture medium eliminated the glucose effect. Disruption of the crr gene or overproduction of LacY also eliminated the glucose effect. These results are fully consistent with our previous finding that the glucose effect in wild-type cells growing in a glucose–lactose medium is not due to the reduction of CRP–cAMP levels but is due to the inducer exclusion. We found that the glucose effect in the lacL8UV5 cells was no longer observed when either the crp or the cya gene was disrupted. Evidence suggested that CRP–cAMP may not enhance directly the lac repressor action in vivo. Northern blot analysis revealed that the mRNA for ptsG, a major glucose transporter gene, was markedly reduced in a Δcrp or Δcya background. The constitutive expression of the ptsG gene by the introduction of a multicopy plasmid restored the glucose effect in Δcya or Δcrp cells. We conclude that CRP–cAMP plays a crucial role in inducer exclusion, which is responsible for the glucose–lactose diauxie, by activating the expression of the ptsG gene.
Resumo:
Residue 225 in serine proteases of the chymotrypsin family is Pro or Tyr in more than 95% of nearly 300 available sequences. Proteases with Y225 (like some blood coagulation and complement factors) are almost exclusively found in vertebrates, whereas proteases with P225 (like degradative enzymes) are present from bacteria to human. Saturation mutagenesis of Y225 in thrombin shows that residue 225 affects ligand recognition up to 60,000-fold. With the exception of Tyr and Phe, all residues are associated with comparable or greatly reduced catalytic activity relative to Pro. The crystal structures of three mutants that differ widely in catalytic activity (Y225F, Y225P, and Y225I) show that although residue 225 makes no contact with substrate, it drastically influences the shape of the water channel around the primary specificity site. The activity profiles obtained for thrombin also suggest that the conversion of Pro to Tyr or Phe documented in the vertebrates occurred through Ser and was driven by a significant gain (up to 50-fold) in catalytic activity. In fact, Ser and Phe are documented in 4% of serine proteases, which together with Pro and Tyr account for almost the entire distribution of residues at position 225. The unexpected crucial role of residue 225 in serine proteases explains the evolutionary selection of residues at this position and shows that the structural determinants of protease activity and specificity are more complex than currently believed. These findings have broad implications in the rational design of enzymes with enhanced catalytic properties.
Resumo:
The yeast transcriptional repressor Tup1, tethered to DNA, represses to strikingly different degrees transcription elicited by members of two classes of activators. Repression in both cases is virtually eliminated by mutation of either member of the cyclin-kinase pair Srb10/11. In contrast, telomeric chromatin affects both classes of activators equally, and in neither case is that repression affected by mutation of Srb10/11. In vitro, Tup1 interacts with RNA polymerase II holoenzyme bearing Srb10 as well as with the separated Srb10. These and other findings indicate that at least one aspect of Tup1's action involves interaction with the RNA polymerase II holoenzyme.
Resumo:
The combined structural and biochemical studies on Lac repressor bound to operator DNA have demonstrated the central role of the hinge helices in operator bending and the induction mechanism. We have constructed a covalently linked dimeric Lac-headpiece that binds DNA with four orders of magnitude higher affinity as compared with the monomeric form. This enabled a detailed biochemical and structural study of Lac binding to its cognate wild-type and selected DNA operators. The results indicate a profound contribution of hinge helices to the stability of the protein–DNA complex and highlight their central role in operator recognition. Furthermore, protein–DNA interactions in the minor groove appear to modulate hinge helix stability, thus accounting for affinity differences and protein-induced DNA bending among the various operator sites. Interestingly, the in vitro DNA-binding affinity of the reported dimeric Lac construct can de readily modulated by simple adjustment of redox conditions, thus rendering it a potential artificial gene regulator.