958 resultados para CROSS-FLOW


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a different type of cross flow dielectric barrier discharge (DBD) reactor was designed and tested. Here the gas flow is perpendicular to the barrier discharge electrode. Discharge plasma was utilized to oxidize NO contained in the exhaust gas to NO2 and subsequent NO2 removal can be improved using an adsorbent system. A detailed study of DeNO(X) in a stationary diesel engine exhaust was carried out using pulsed electrical discharges/adsorbent processes. Activated alumina (Al2O3) and MS-13x were used as adsorbents at room temperature. The main emphasis is laid on the removal of NOX from the filtered diesel engine exhaust. In filtered exhaust environment, the cross flow reactor along with adsorbent exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. In this paper we bring out a relative comparison of discharge plasma and plasma-adsorbent process at various gas flow rates, ranging from 2 l/min to 25 l/min. The discharge plasma-adsorbent assisted barrier discharge reactor has shown promising results in NOX removal at high flow rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a numerical investigation is performed to study the mixed convective flow and heat transfer characteristics past a square cylinder in cross flow at incidence. Utilizing air (Pr = 0.71) as an operating fluid, computations are carried out at a representative Reynolds number (Re) of 100. Angles of incidences are varied as, 0 degrees <= alpha <= 45 degrees. Effect of superimposed positive and negative cross-flow buoyancy is brought about by varying the Richardson number (RI) in the range -1.0 <= Ri <= 1.0. The detail features of flow topology and heat transport are analyzed critically for different angles of incidences. The thermo fluidic forces acting on the cylinder during mixed convection are captured in terms of the drag (C-D), lift (C-L), and moment (C-M) coefficients. The results show that the lateral width of the cylinder wake reduces with increasing alpha and the isotherms spread out far wide. In the range 0 degrees < alpha < 45 degrees, C-D reduces with increasing Ri. The functional dependence of C-M with Ri reveals a linear relationship. Thermal boundary layer thickness reduces with increasing angle of incidences. The global rate of heat transfer from the cylinder increases with increasing alpha. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Injection of liquid fuel in cross flowing air has been a strategy for future aircraft engines in order to control the emissions. In this context, breakup of a pressure swirl spray in gaseous cross-flow is investigated experimentally. The atomizer discharges a conical swirling sheet of liquid that interacts with cross-flowing air. This complex interaction and the resulting spray structures at various flow conditions are studied through flow visualization using still as well as high speed photography. Experiments are performed over a wide range of aerodynamic Weber number (2-300) and liquid-to-air momentum flux ratio (5-150). Various breakup regimes exhibiting different breakup processes are mapped on a parameter space based on flow conditions. This map shows significant variations from breakup regime map for a plain liquid jet in cross-flow. It is observed that the breakup of leeward side of the sheet is dominated by bag breakup and the windward side of the sheet undergoes breakup through surface waves. Similarities and differences between bag breakup present in plain liquid jet in cross-flow and swirl spray in cross-flow are explained. Multimodal drop size distribution from bag breakup, frequency of bag breakup, wavelength of surface waves and trajectory of spray in cross-flow are measured by analyzing the spray images and parametric study of their variations is also presented. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical simulation was conducted to characterize the kerosene spray injecting into supersonic cross flow, especially focusing on the aerodynamic secondary breakup effect of the supersonic cross flow on the initial droplets. It was revealed that the initial parent drops were broken up into small drops whose diameter is about O(10) micrometers soon after they entered into the supersonic cross flow. During the appropriate range of initial drop size, the parent droplets would be broken up into small drops with the same magnitude diameter no matter how large the initial drops SMD was.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanofiltration (NF) of model sugar solutions and commercial oligosaccharide mixtures were studied in both dead-end and cross-flow modes. Preliminary trials, with a dead-end filtration cell, demonstrated the feasibility of fractionating monosaccharides from disaccharides and oligosaccharides in mixtures, using loose nanofiltration (NF-CA-50, NF-TFC-50) membranes. During the nanofiltration purification of a commercial oligosaccharide mixture, yields of 19% (w w-1) for the monosaccharides and 88% (w w-1) for di, and oligosaccharides were obtained for the NF-TFC-50 membrane after four filtration steps, indicating that removal of the monosaccharides is possible, with only minor losses of the oligosaccharide content of the mixture. The effects of pressure, feed concentration, and filtration temperature were studied in similar experiments carried out in a cross-flow system, in full recycle mode of operation. The rejection rates of the sugar components increased with increasing pressure, and decreased with both increasing total sugar concentration in the feed and increasing temperature. Continuous diafiltration (CD) purification of model sugar solutions and commercial oligosaccharide mixtures using NF-CA-50 (at 25oC) and DS-5-DL (at 60oC) membranes, gave yield values of 14 to 18% for the monosaccharide, 59 to 89% for the disaccharide and 81 to 98% for the trisaccharide present in the feed. The study clearly demonstrates the potential of cross flow nanofiltration in the purification of oligosaccharide mixtures from the contaminant monosaccharides.