433 resultados para CRH, neuroprotection, BDNF, Connexin43
Resumo:
Das Corticotropin Releasing Hormon (CRH) ist ein zentraler Mediator des neuroendokrinen Systems von Säugetieren und kontrolliert die physiologische Stressreaktion des Körpers. Zudem zeigten in vitro Daten, dass es Neuroprotektion gegenüber oxidativem Stress induzieren kann. In der vorliegenden Arbeit konnte erstmals ein neuroprotektiver Effekt des CRH in vivo gezeigt werden. Die Überexpression des CRH im ZNS von Mäusen konnte Nervenzellen in vivo vor Exzitotoxizität schützen; nach Injektion des Exzitotoxins Kainat verkürzte die CRH-Überexpression die Dauer der epileptischen Anfälle, schützte die Neurone der betroffenen Hippocampusregion vor Zelltod und verhinderte die bei Exzitotoxizität und vielen neurodegenerativen Erkrankungen auftretende Neuroinflammation. Desweiteren konnten in CRH-überexprimierenden Tieren erhöhte BDNF-Proteinspiegel nachgewiesen werden. BDNF, ein bedeutender neurotropher Faktor im ZNS, vermittelt daher teilweise die CRH-induzierte Neuroprotektion gegenüber der Exzitotoxizität in vivo. Im Rahmen dieser Arbeit wurde mit Connexin43, dem Haupt-Gap Junction-Protein der Astrozyten, ein neues CRH-Zielgen im ZNS identifiziert. Es konnte erstmals gezeigt werden, dass CRH sowohl die Expression des Connexin43-Gens als auch den Connexin43-Proteinspiegel in vitro und in vivo erhöht. Diese Effekte werden über die Aktivierung des CRH-Rezeptor 1 und nachfolgend der PKA- und MAPK-Signalwege vermittelt. In Übereinstimmung mit der Hochregulation des Connexin43-Proteinspiegels verstärkte CRH auch die interzelluläre Kommunikation über Gap Junctions. Physiologisch hat diese CRH-induzierte Verstärkung der astrozytären Gap Junction-Kommunikation eine große Bedeutung für die Neuroprotektion, da eine Hochregulation der interzellulären Kommunikation schnell toxische Moleküle verdünnt, Energiesubstrate und protektive Faktoren verteilt und Ionen abpuffert. Dadurch werden Schädigungen durch oxidativen Stress in den Zellen reduziert, was über die Analyse der Proteincarbonylierung gezeigt wurde. Die Relevanz der astrozytären Gap Junction-Kommunikation für das Überleben der Neurone konnte in organotypischen hippocampalen Schnitten und in Neuron-Astrozyten-Co-Kulturen deutlich gemacht werden. Die im Rahmen der vorliegenden Arbeit gewonnenen Daten zeigen, dass die Stress-induzierte Sekretion von CRH im ZNS zur verstärkten Expression neuroprotektiver Moleküle wie BDNF und Connexin43 beiträgt. Diese vermögen Neurone gegenüber toxischen Einflüssen zu schützen und zum Erhalt ihrer Funktion beizutragen. Die protektiven CRH-Effekte könnten speziell bei chronischen neurodegenerativen Krankheiten wie der Alzheimerschen Demenz und der Parkinsonschen Krankheit hilfreich sein.
Resumo:
Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2016
Resumo:
The concept that optic nerve fiber loss might be reduced by neuroprotection arose in the mid 1990s. The subsequent research effort, focused mainly on rodent models, has not yet transformed into a successful clinical trial, but provides mechanistic understanding of retinal ganglion cell death and points to potential therapeutic strategies. This review highlights advances made over the last year. In excitotoxicity and axotomy models retinal ganglion cell death has been shown to result from a complex interaction between retinal neurons and Müller glia, which release toxic molecules including tumor necrosis factor alpha. This counteracts neuroprotection by neurotrophins such as nerve growth factor, which bind to p75NTR receptors on Müller glia stimulating the toxic release. Another negative effect against neurotrophin-mediated protection involves the action of LINGO-1 at trkB brain-derived neurotrophic factor (BDNF) receptors, and BDNF neuroprotection is enhanced by an antagonist to LINGO-1. As an alternative to pharmacotherapy, retinal defences can be stimulated by exposure to infrared radiation. The mechanisms involved in glaucoma and other optic nerve disorders are being clarified in rodent models, focusing on retrograde degeneration following axonal damage, excitotoxicity and inflammatory/autoimmune mechanisms. Neuroprotective strategies are being refined in the light of the mechanistic understanding.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.
106: Synthetic preimplantation factor (sPIF*) promotes neuroprotection by modulating PKA/PKC kinases
Resumo:
OBJECTIVE: Survivors of premature birth suffer from long term disabilities. Synthetic PreImplantation Factor (sPIF*) modulates inflammatory responses and reverses neuroinflammation. Proteinkinase A (PKA) and protein kinase C (PKC) are crucial signaling molecules. PKA up-regulates IL-10 and brain-derived neurotrophic factor (BDNF) expression, which exert neuroprotective effects. Anti-apoptotic phosphorylation of Bad is mediated by PKA. PKC phosphorylates GAP-43, a marker for neuronal plasticity and structural recovery. We explored sPIF protective role in neuronal (N2a) cells and in a rat model of encephalopathy of prematurity. *proprietary. STUDY DESIGN: Cells were subjected to LPS and treated with sPIF or scrambled sPIF. Neonatal rats (postnatal day 3: P3) were subjected to LPS, ligation of carotid artery, and hypoxia (8% O2, 65min; n¼ 30). sPIF (0.75mg/kg twice daily) was injected (P6-13) and brains harvested at P13. sPIF’s potential and mechanisms were evaluated using immunohistochemistry, ELISA, Western Blot, and qRT-PCR. Data were analyzed using two-tailed Student’s t-test. P<0.05 wasconsidered statistically significant. RESULTS: In vitro sPIF increased PKA/PKC activity in time dependent manner (Fig. 1A). sPIF induced higher IL-10, BDNF, and GAP-43 and lower CASP3, BAD, and TNF-a mRNA levels (Fig. 1B,C). sPIF increased pGap-43/Gap-43 and decreased pBad/Bad ratio while decreasing Bad (Fig. 1 D,E). In brain tissue sPIF treatment resulted in rescued neuronal number (NeuN positive cells) and reduced apoptosis (Casp-3 positive cells) with decreased glial (Iba-1 positive cells) activation (Fig. 2A,B). The Iba-1 morphology changed from predominantly amoeboid to ramified state. Additionally sPIF increased IL-10 mRNA levels (Fig. 2C) and pGap-43/Gap-43 ratio (Fig. 2D). CONCLUSION: sPIF modulates PKA/PKC pathways reducing apoptosis and inflammatory responses while increasing neuronal plasticity and survival. The identified PKA/PKC regulatory axis strengthens the potential of sPIF in reducing the burden of prematurity.
Resumo:
The PC12 and SH-SY5Y cell models have been proposed as potentially realistic models to investigate neuronal cell toxicity. The effects of oxidative stress (OS) caused by both H2O2 and Aβ on both cell models were assessed by several methods. Cell toxicity was quantitated by measuring cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) viability assay, an indicator of the integrity of the electron transfer chain (ETC), and cell morphology by fluorescence and video microscopy, both of which showed OS to cause decreased viability and changes in morphology. Levels of intracellular peroxide production, and changes in glutathione and carbonyl levels were also assessed, which showed OS to cause increases in intracellular peroxide production, glutathione and carbonyl levels. Differentiated SH-SY5y cells were also employed and observed to exhibit the greatest sensitivity to toxicity. The neurotrophic factor, nerve growth factor (NGF) was shown to cause protection against OS. Cells pre-treated with NGF showed higher viability after OS, generally less apoptotic morphology, recorded less apoptotic nucleiods, generally lower levels of intracellular peroxides and changes in gene expression. The neutrophic factor, brain derived growth factor (BDNF) and ascorbic acid (AA) were also investigated. BDNF showed no specific neuroprotection, however the preliminary data does warrant further investigation. AA showed a 'janus face' showing either anti-oxidant action and neuroprotection or pro-oxidant action depending on the situation. Results showed that the toxic effects of compounds such as Aβ and H2O2 are cell type dependent, and that OS alters glutathione metabolism in neuronal cells. Following toxic insult, glutathione levels are depleted to low levels. It is herein suggested that this lowering triggers an adaptive response causing alterations in glutathione metabolism as assessed by evaluation of glutathione mRNA biosynthetic enzyme expression and the subsequent increase in glutathione peroxidase (GPX) levels.
Brain-derived neurotrophic factor (BDNF) gene : no major impact on antidepressant treatment response
Resumo:
The brain-derived neurotrophic factor (BDNF) has been suggested to play a pivotal role in the aetiology of affective disorders. In order to further clarify the impact of BDNF gene variation on major depression as well as antidepressant treatment response, association of three BDNF polymorphisms [rs7103411, Val66Met (rs6265) and rs7124442] with major depression and antidepressant treatment response was investigated in an overall sample of 268 German patients with major depression and 424 healthy controls. False discovery rate (FDR) was applied to control for multiple testing. Additionally, ten markers in BDNF were tested for association with citalopram outcome in the STAR*D sample. While BDNF was not associated with major depression as a categorical diagnosis, the BDNF rs7124442 TT genotype was significantly related to worse treatment outcome over 6 wk in major depression (p=0.01) particularly in anxious depression (p=0.003) in the German sample. However, BDNF rs7103411 and rs6265 similarly predicted worse treatment response over 6 wk in clinical subtypes of depression such as melancholic depression only (rs7103411: TT
Resumo:
Programmed cell death (PCD) and progenitor cell generation (of glial and in some brain areas also neuronal fate) in the CNS is an active process throughout life and is generally not associated with gliosis which means that PCD can be pathologically silent. The striking discovery that progenitor cell generation (of glial and in some brain areas neuronal fate) is widespread in the adult CNS (especially the hippocampus) suggest a much more dynamic scenario than previously thought and transcends the dichotomy between neurodevelopmental and neurodegenerative models of schizophrenia and related disorders. We suggest that the regulatory processes that control the regulation of PCD and the generation of progenitor cells may be disturbed in the early phase of psychotic disorders underpinning a disconnectivity syndrom at the onset of clinically overt disorders. An ongoing 1H-MRS study of the anterior hippocampus at 3 Tesla in mostly drug-naive first-episode psychosis patients suggests no change in NAA, but significant increases in myo-inositol and lactate. The data suggests that neuronal integrity in the anterior hippocampus is still intact at the early stage of illness or mainly only functionally impaired. However the increase in lactate and myo-inositol may reflect a potential disturbance of generation and PCD of progenitor cells (of glial and in selected brain areas also neuronal fate) at the onset of psychosis. If true the use of neuroprotective agents such as lithium or eicosapentaenoic acid (which inhibit PCD and support cell generation)in the early phase of psychotic disorders may be a potent treatment avenue to explore.
Resumo:
A number of observations have suggested that brain derived neurotrophic factor (BDNF) plays a role in migraine pathophysiology. This study investigates whether variants in the BDNF gene are associated with migraine in an Australian case-control population. Background. Brain derived neurotrophic factor (BDNF) has an important role in neural growth, development and survival in the central nervous system and is an important modulator of central and peripheral pain responses. Variants in BDNF, in particular the functional Val66Met polymorphism (rs6265), have been found to be associated with a number of psychiatric disorders, cognitive function and obesity. As BDNF has been found to be differentially expressed in a number of aspects related to migraine, we tested for association between single nucleotide polymorphisms (SNPs) in BDNF and migraine. Methods. Five SNPs in the BDNF locus (rs1519480, rs6265, rs712507, rs2049046 and rs12273363) were genotyped initially in a cohort of 277 migraine cases, including 172 diagnosed with migraine with aura (MA) and 105 with migraine without aura (MO), and 277 age- and sex-matched controls. Three of these SNPs (rs6265, rs2049046 and rs12273363) were subsequently genotyped in a second cohort of 580 migraineurs, including 473 diagnosed with MA and 105 with O, and 580 matched controls. Results. – BDNF SNPs rs1519480, rs6265, rs712507 and rs12273363 were not significantly associated with migraine. However, rs2049046 showed a significant association with migraine, and in particular, MA in the first cohort. In the second cohort, although an increase in the rs2049046 T-allele frequency was observed in migraine cases, and in both MA and MO subgroups, it was not significantly different from controls. Analysis of data combined from both cohorts for rs2049046 showed significant differences in the genotypic and allelic distributions for this marker in both migraine and the MA sub-group. Conclusion. This study confirmed previous studies that the functional BDNF SNP rs6265 (Val66Met) is not associated with migraine. However, we found that rs2049046, which resides at the 5’ end of 3 one the BDNF transcripts, may be associated with migraine, suggesting that further investigations of this SNP may be warranted.
Resumo:
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-alpha). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-alpha rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-alpha polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-alpha polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-alpha and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-alpha in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Resumo:
Aims The functional BDNF single nucleotide polymorphism (SNP) rs6265 has been associated with many disorders including schizophrenia and alcohol dependence. However, studies have been inconsistent, reporting both positive and negative associations. Comorbid alcohol dependence has a high prevalence in schizophrenia so we investigated the role of rs6265 in alcohol dependence in Australian populations of schizophrenia and alcohol dependent patients. Methods Two BDNF SNPs rs6265 and a nearby SNP rs7103411 were genotyped in a total of 848 individuals. These included a schizophrenia group (n = 157) and a second schizophrenia replication group (n = 235), an alcohol dependent group (n = 231) that had no schizophrenia diagnosis and a group of healthy controls (n = 225). Results Allelic association between rs7103411 and comorbid alcohol dependence was identified (P = 0.044) in the primary schizophrenia sample. In the replication study, we were able to detect allelic associations between both BDNF SNPs and comorbid alcohol dependence (rs6265, P = 0.006; rs7103411, P = 0.014). Moreover, we detected association between both SNPs and risk-taking behaviour after drinking (rs6265, P = 0.005; rs7103411, P = 0.009) and we detected strong association between both SNPs and alcohol dependence in males (rs6265, P = 0.009; rs7103411, P = 0.013) while females showed association with multiple behavioural measures reflecting repetitive alcohol consumption. Haplotype analysis revealed the rs6265-rs7103411 A/C haplotype is associated with comorbid alcohol dependence (P = 0.002). When these SNPs were tested in the non-schizophrenia alcohol dependent group we were unable to detect association. Conclusion We conclude that these BDNF SNPs play a role in development of comorbid alcohol dependence in schizophrenia while our data does not indicate that they play a role in alcohol dependent patients who do not have schizophrenia.
Resumo:
Brain-derived neurotrophic factor (BDNF) plays a key role in learning and memory, but its effects on the fiber architecture of the living brain are unknown. We genotyped 455 healthy adult twins and their non-twin siblings (188 males/267 females; age: 23.7 ± 2.1. years, mean ± SD) and scanned them with high angular resolution diffusion tensor imaging (DTI), to assess how the BDNF Val66Met polymorphism affects white matter microstructure. By applying genetic association analysis to every 3D point in the brain images, we found that the Val-BDNF genetic variant was associated with lower white matter integrity in the splenium of the corpus callosum, left optic radiation, inferior fronto-occipital fasciculus, and superior corona radiata. Normal BDNF variation influenced the association between subjects' performance intellectual ability (as measured by Object Assembly subtest) and fiber integrity (as measured by fractional anisotropy; FA) in the callosal splenium, and pons. BDNF gene may affect the intellectual performance by modulating the white matter development. This combination of genetic association analysis and large-scale diffusion imaging directly relates a specific gene to the fiber microstructure of the living brain and to human intelligence.
Resumo:
Oxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.
Resumo:
OBJECTIVE: A study was undertaken to determine whether better cognitive functioning at midlife among more physically fit individuals reflects neuroprotection, by which fitness protects against age-related cognitive decline, or neuroselection, by which children with higher cognitive functioning select more active lifestyles. METHODS: Children in the Dunedin Longitudinal Study (N = 1,037) completed the Wechsler Intelligence Scales and the Trail Making, Rey Delayed Recall, and Grooved Pegboard tasks as children and again at midlife (age = 38 years). Adult cardiorespiratory fitness was assessed using a submaximal exercise test to estimate maximum oxygen consumption adjusted for body weight in milliliters/minute/kilogram. We tested whether more fit individuals had better cognitive functioning than their less fit counterparts (which could be consistent with neuroprotection), and whether better childhood cognitive functioning predisposed to better adult cardiorespiratory fitness (neuroselection). Finally, we examined possible mechanisms of neuroselection. RESULTS: Participants with better cardiorespiratory fitness had higher cognitive test scores at midlife. However, fitness-associated advantages in cognitive functioning were already present in childhood. After accounting for childhood baseline performance on the same cognitive tests, there was no association between cardiorespiratory fitness and midlife cognitive functioning. Socioeconomic and health advantages in childhood and healthier lifestyles during young adulthood explained most of the association between childhood cognitive functioning and adult cardiorespiratory fitness. INTERPRETATION: We found no evidence for a neuroprotective effect of cardiorespiratory fitness as of midlife. Instead, children with better cognitive functioning are selecting healthier lives. Fitness interventions may enhance cognitive functioning. However, observational and experimental studies testing neuroprotective effects of physical fitness should consider confounding by neuroselection.