270 resultados para CRH, Neuroprotektion, BDNF, Connexin43
Resumo:
Das Corticotropin Releasing Hormon (CRH) ist ein zentraler Mediator des neuroendokrinen Systems von Säugetieren und kontrolliert die physiologische Stressreaktion des Körpers. Zudem zeigten in vitro Daten, dass es Neuroprotektion gegenüber oxidativem Stress induzieren kann. In der vorliegenden Arbeit konnte erstmals ein neuroprotektiver Effekt des CRH in vivo gezeigt werden. Die Überexpression des CRH im ZNS von Mäusen konnte Nervenzellen in vivo vor Exzitotoxizität schützen; nach Injektion des Exzitotoxins Kainat verkürzte die CRH-Überexpression die Dauer der epileptischen Anfälle, schützte die Neurone der betroffenen Hippocampusregion vor Zelltod und verhinderte die bei Exzitotoxizität und vielen neurodegenerativen Erkrankungen auftretende Neuroinflammation. Desweiteren konnten in CRH-überexprimierenden Tieren erhöhte BDNF-Proteinspiegel nachgewiesen werden. BDNF, ein bedeutender neurotropher Faktor im ZNS, vermittelt daher teilweise die CRH-induzierte Neuroprotektion gegenüber der Exzitotoxizität in vivo. Im Rahmen dieser Arbeit wurde mit Connexin43, dem Haupt-Gap Junction-Protein der Astrozyten, ein neues CRH-Zielgen im ZNS identifiziert. Es konnte erstmals gezeigt werden, dass CRH sowohl die Expression des Connexin43-Gens als auch den Connexin43-Proteinspiegel in vitro und in vivo erhöht. Diese Effekte werden über die Aktivierung des CRH-Rezeptor 1 und nachfolgend der PKA- und MAPK-Signalwege vermittelt. In Übereinstimmung mit der Hochregulation des Connexin43-Proteinspiegels verstärkte CRH auch die interzelluläre Kommunikation über Gap Junctions. Physiologisch hat diese CRH-induzierte Verstärkung der astrozytären Gap Junction-Kommunikation eine große Bedeutung für die Neuroprotektion, da eine Hochregulation der interzellulären Kommunikation schnell toxische Moleküle verdünnt, Energiesubstrate und protektive Faktoren verteilt und Ionen abpuffert. Dadurch werden Schädigungen durch oxidativen Stress in den Zellen reduziert, was über die Analyse der Proteincarbonylierung gezeigt wurde. Die Relevanz der astrozytären Gap Junction-Kommunikation für das Überleben der Neurone konnte in organotypischen hippocampalen Schnitten und in Neuron-Astrozyten-Co-Kulturen deutlich gemacht werden. Die im Rahmen der vorliegenden Arbeit gewonnenen Daten zeigen, dass die Stress-induzierte Sekretion von CRH im ZNS zur verstärkten Expression neuroprotektiver Moleküle wie BDNF und Connexin43 beiträgt. Diese vermögen Neurone gegenüber toxischen Einflüssen zu schützen und zum Erhalt ihrer Funktion beizutragen. Die protektiven CRH-Effekte könnten speziell bei chronischen neurodegenerativen Krankheiten wie der Alzheimerschen Demenz und der Parkinsonschen Krankheit hilfreich sein.
Brain-derived neurotrophic factor (BDNF) gene : no major impact on antidepressant treatment response
Resumo:
The brain-derived neurotrophic factor (BDNF) has been suggested to play a pivotal role in the aetiology of affective disorders. In order to further clarify the impact of BDNF gene variation on major depression as well as antidepressant treatment response, association of three BDNF polymorphisms [rs7103411, Val66Met (rs6265) and rs7124442] with major depression and antidepressant treatment response was investigated in an overall sample of 268 German patients with major depression and 424 healthy controls. False discovery rate (FDR) was applied to control for multiple testing. Additionally, ten markers in BDNF were tested for association with citalopram outcome in the STAR*D sample. While BDNF was not associated with major depression as a categorical diagnosis, the BDNF rs7124442 TT genotype was significantly related to worse treatment outcome over 6 wk in major depression (p=0.01) particularly in anxious depression (p=0.003) in the German sample. However, BDNF rs7103411 and rs6265 similarly predicted worse treatment response over 6 wk in clinical subtypes of depression such as melancholic depression only (rs7103411: TT
Resumo:
A number of observations have suggested that brain derived neurotrophic factor (BDNF) plays a role in migraine pathophysiology. This study investigates whether variants in the BDNF gene are associated with migraine in an Australian case-control population. Background. Brain derived neurotrophic factor (BDNF) has an important role in neural growth, development and survival in the central nervous system and is an important modulator of central and peripheral pain responses. Variants in BDNF, in particular the functional Val66Met polymorphism (rs6265), have been found to be associated with a number of psychiatric disorders, cognitive function and obesity. As BDNF has been found to be differentially expressed in a number of aspects related to migraine, we tested for association between single nucleotide polymorphisms (SNPs) in BDNF and migraine. Methods. Five SNPs in the BDNF locus (rs1519480, rs6265, rs712507, rs2049046 and rs12273363) were genotyped initially in a cohort of 277 migraine cases, including 172 diagnosed with migraine with aura (MA) and 105 with migraine without aura (MO), and 277 age- and sex-matched controls. Three of these SNPs (rs6265, rs2049046 and rs12273363) were subsequently genotyped in a second cohort of 580 migraineurs, including 473 diagnosed with MA and 105 with O, and 580 matched controls. Results. – BDNF SNPs rs1519480, rs6265, rs712507 and rs12273363 were not significantly associated with migraine. However, rs2049046 showed a significant association with migraine, and in particular, MA in the first cohort. In the second cohort, although an increase in the rs2049046 T-allele frequency was observed in migraine cases, and in both MA and MO subgroups, it was not significantly different from controls. Analysis of data combined from both cohorts for rs2049046 showed significant differences in the genotypic and allelic distributions for this marker in both migraine and the MA sub-group. Conclusion. This study confirmed previous studies that the functional BDNF SNP rs6265 (Val66Met) is not associated with migraine. However, we found that rs2049046, which resides at the 5’ end of 3 one the BDNF transcripts, may be associated with migraine, suggesting that further investigations of this SNP may be warranted.
Resumo:
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-alpha). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-alpha rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-alpha polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-alpha polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-alpha and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-alpha in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Resumo:
Aims The functional BDNF single nucleotide polymorphism (SNP) rs6265 has been associated with many disorders including schizophrenia and alcohol dependence. However, studies have been inconsistent, reporting both positive and negative associations. Comorbid alcohol dependence has a high prevalence in schizophrenia so we investigated the role of rs6265 in alcohol dependence in Australian populations of schizophrenia and alcohol dependent patients. Methods Two BDNF SNPs rs6265 and a nearby SNP rs7103411 were genotyped in a total of 848 individuals. These included a schizophrenia group (n = 157) and a second schizophrenia replication group (n = 235), an alcohol dependent group (n = 231) that had no schizophrenia diagnosis and a group of healthy controls (n = 225). Results Allelic association between rs7103411 and comorbid alcohol dependence was identified (P = 0.044) in the primary schizophrenia sample. In the replication study, we were able to detect allelic associations between both BDNF SNPs and comorbid alcohol dependence (rs6265, P = 0.006; rs7103411, P = 0.014). Moreover, we detected association between both SNPs and risk-taking behaviour after drinking (rs6265, P = 0.005; rs7103411, P = 0.009) and we detected strong association between both SNPs and alcohol dependence in males (rs6265, P = 0.009; rs7103411, P = 0.013) while females showed association with multiple behavioural measures reflecting repetitive alcohol consumption. Haplotype analysis revealed the rs6265-rs7103411 A/C haplotype is associated with comorbid alcohol dependence (P = 0.002). When these SNPs were tested in the non-schizophrenia alcohol dependent group we were unable to detect association. Conclusion We conclude that these BDNF SNPs play a role in development of comorbid alcohol dependence in schizophrenia while our data does not indicate that they play a role in alcohol dependent patients who do not have schizophrenia.
Resumo:
Brain-derived neurotrophic factor (BDNF) plays a key role in learning and memory, but its effects on the fiber architecture of the living brain are unknown. We genotyped 455 healthy adult twins and their non-twin siblings (188 males/267 females; age: 23.7 ± 2.1. years, mean ± SD) and scanned them with high angular resolution diffusion tensor imaging (DTI), to assess how the BDNF Val66Met polymorphism affects white matter microstructure. By applying genetic association analysis to every 3D point in the brain images, we found that the Val-BDNF genetic variant was associated with lower white matter integrity in the splenium of the corpus callosum, left optic radiation, inferior fronto-occipital fasciculus, and superior corona radiata. Normal BDNF variation influenced the association between subjects' performance intellectual ability (as measured by Object Assembly subtest) and fiber integrity (as measured by fractional anisotropy; FA) in the callosal splenium, and pons. BDNF gene may affect the intellectual performance by modulating the white matter development. This combination of genetic association analysis and large-scale diffusion imaging directly relates a specific gene to the fiber microstructure of the living brain and to human intelligence.
Resumo:
The BDNF receptor tyrosine kinase, TrkB, underlies nervous system function in both health and disease. Excessive activation of TrkB caused by status epilepticus promotes development of temporal lobe epilepsy (TLE), revealing TrkB as a therapeutic target for prevention of TLE. To circumvent undesirable consequences of global inhibition of TrkB signaling, we implemented a novel strategy aimed at selective inhibition of the TrkB-activated signaling pathway responsible for TLE. Our studies of a mouse model reveal that phospholipase Cγ1 (PLCγ1) is the dominant signaling effector by which excessive activation of TrkB promotes epilepsy. We designed a novel peptide (pY816) that uncouples TrkB from PLCγ1. Treatment with pY816 following status epilepticus inhibited TLE and prevented anxiety-like disorder yet preserved neuroprotective effects of endogenous TrkB signaling. We provide proof-of-concept evidence for a novel strategy targeting receptor tyrosine signaling and identify a therapeutic with promise for prevention of TLE caused by status epilepticus in humans.
Resumo:
Schizophrenia is clinically heterogeneous and multidimensional, but it is not known whether this is due to etiological heterogeneity. Previous studies have not consistently reported association between any specific polymorphisms and clinical features of schizophrenia, and have primarily used case-control designs. We tested for the presence of association between clinical features and polymorphisms in the genes for the serotonin 2A receptor (HT2A), dopamine receptor types 2 and 4, dopamine transporter (SLC6A3), and brain-derived neurotrophic factor (BDNF). Two hundred seventy pedigrees were ascertained on the basis of having two or more members with schizophrenia or poor outcome schizoaffective disorder. Diagnoses were made using a structured interview based on the SCID. All patients were rated on the major symptoms of schizophrenia scale (MSSS), integrating clinical and course features throughout the course of illness. Factor analysis revealed positive, negative, and affective symptom factors. The program QTDT was used to implement a family-based test of association for quantitative traits, controlling for age and sex. We found suggestive evidence of association between the His452Tyr polymorphism in HT2A and affective symptoms (P = 0.02), the 172-bp allele of BDNF and negative symptoms (P = 0.04), and the 480-bp allele in SLC6A3 (= DAT1) and negative symptoms (P = 0.04). As total of 19 alleles were tested, we cannot rule out false positives. However, given prior evidence of involvement of the proteins encoded by these genes in psychopathology, our results suggest that more attention should be focused on the impact of these alleles on clinical features of schizophrenia.
Resumo:
Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.
Resumo:
The brain derived neurotrophic factor (BDNF) Val66Met polymorphism and stimulation duration are thought to play an important role in modulating motor cortex plasticity induced by non-invasive brain stimulation (NBS). In the present study we sought to determine whether these factors interact or exert independent effects in older adults. Fifty-four healthy older adults (mean age = 66.85 years) underwent two counterbalanced sessions of 1.5 mA anodal transcranial direct current stimulation (atDCS), applied over left M1 for either 10 or 20 min. Single pulse transcranial magnetic stimulation (TMS) was used to assess corticospinal excitability (CSE) before and every 5 min for 30 min following atDCS. On a group level, there was an interaction between stimulation duration and BDNF genotype, with Met carriers (n = 13) showing greater post-intervention potentiation of CSE compared to Val66Val homozygotes homozygotes (n = 37) following 20 min (p = 0.002) but not 10 min (p = 0.219) of stimulation. Moreover, Met carriers, but not Val/Val homozygotes, exhibited larger responses to TMS (p = 0.046) after 20 min atDCS, than following 10 min atDCS. On an individual level, two-step cluster analysis revealed a considerable degree of inter-individual variability, with under half of the total sample (42%) showing the expected potentiation of CSE in response to atDCS across both sessions. Intra-individual variability in response to different durations of atDCS was also apparent, with one-third of the total sample (34%) exhibiting LTP-like effects in one session but LTD-like effects in the other session. Both the inter-individual (p = 0.027) and intra-individual (p = 0.04) variability was associated with BDNF genotype. In older adults, the BDNF Val66Met polymorphism along with stimulation duration appears to play a role in modulating tDCS-induced motor cortex plasticity. The results may have implications for the design of NBS protocols for healthy and diseased aged populations.
Resumo:
Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2016
Resumo:
Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.
Resumo:
Tesis (Maestría en Ciencias en Nutrición) UANL, 2014.