994 resultados para COTTON FIBER
Resumo:
An important feature in computer systems developed for the agricultural sector is to satisfy the heterogeneity of data generated in different processes. Most problems related with this heterogeneity arise from the lack of standard for different computing solutions proposed. An efficient solution for that is to create a single standard for data exchange. The study on the actual process involved in cotton production was based on a research developed by the Brazilian Agricultural Research Corporation (EMBRAPA) that reports all phases as a result of the compilation of several theoretical and practical researches related to cotton crop. The proposition of a standard starts with the identification of the most important classes of data involved in the process, and includes an ontology that is the systematization of concepts related to the production of cotton fiber and results in a set of classes, relations, functions and instances. The results are used as a reference for the development of computational tools, transforming implicit knowledge into applications that support the knowledge described. This research is based on data from the Midwest of Brazil. The choice of the cotton process as a study case comes from the fact that Brazil is one of the major players and there are several improvements required for system integration in this segment.
Resumo:
A cDNA encoding annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA was expressed in Escherichia coli, and the resultant recombinant protein was purified. We then investigated some biochemical properties of the recombinant annexin based on the current understanding of plant annexins. An “add-back experiment” was performed to study the effect of the recombinant annexin on β-glucan synthase activity, but no effect was found. However, it was found that the recombinant annexin could display ATPase/GTPase activities. The recombinant annexin showed much higher GTPase than ATPase activity. Mg2+ was essential for these activities, whereas a high concentration of Ca2+ was inhibitory. A photolabeling assay showed that this annexin could bind GTP more specifically than ATP. The GTP-binding site on the annexin was mapped into the carboxyl-terminal fourth repeat of annexin from the photolabeling experiment using domain-deletion mutants of this annexin. Northern-blot analysis showed that the annexin gene was highly expressed in the elongation stages of cotton fiber differentiation, suggesting a role of this annexin in cell elongation.
Resumo:
Description based on: Crop of 1959 (Aug. 3, 1959).
Resumo:
Bibliography: p. 17-18.
Resumo:
Cover title.
Resumo:
The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011
Resumo:
Cellulose fibers obtained from the textile industry (lyocell) were investigated as a potential reinforcement for thermoset phenolic matrices, to improve their mechanical properties. Textile cotton fibers were also considered. The fibers were characterized in terms of their chemical composition and analyzed using TGA, SEM, and X-ray. The thermoset (non-reinforced) and composites (phenolic matrices reinforced with randomly dispersed fibers) were characterized using TG, DSC, SEM, DMTA, the Izod impact strength test, and water absorption capacity analysis. The composites that were reinforced with lyocell fibers exhibited impact strengths of nearly 240 Jm(-1), whereas those reinforced with cotton fibers exhibited impact strengths of up to 773 Jm(-1). In addition to the aspect ratio, the higher crystallinity of cotton fibers compared to lyocell likely plays a role in the impact strength of the composite reinforced by the fibers. The SEM images showed that the porosity of the textile fibers allowed good bulk diffusion of the phenolic resin, which, in turn, led to both good adhesion of fiber to matrix and fewer microvoids at the interface.
Resumo:
"Circular 290."
Resumo:
棉纤维是棉花子房内的胚珠外珠被上的一种单细胞表皮毛.为了解胚珠表皮细胞发育启动为棉纤维的分子控制机制,我们用同源克隆的方法,从棉纤维发育早期的幼嫩子房和胚珠中克隆到了72个棉花MYB基因.序列分析的结果表明它们属于MYB转录因子家族的55个成员,其中有一个MYB蛋白-GhMYB9的氨基酸序列与控制拟南芥单细胞表皮毛的发育启动基因GL1和WER高度同源.它们之间的序列一致性,不仅表现在保守区-DNA结合区,而且也表现在5’和3’的非保守区内.根据序列相似功能相似的原理,我们推测GhMYB9很可能是控制棉纤维发育启动的一个MYB基因.对GhMYB9的Southern杂交结果表明,该基因在棉花基因组中是单拷贝基因;对它的Northern表达分析可知,该基因在花前5天的子房、花前3天的胚珠、花期及花后3天的胚珠中都有表达,但在花前3天的棉纤维发育启动期(我们的扫描电镜结果)高表达.此外,还构建了一个陆地棉可转化人工染色体TAC文库,并通过PCR的方法从中筛选到了含有GhMYB9的TAC克隆.这些结果为进一步对GhMYB9做功能分析、揭示棉纤维发育启动的分子机制奠定了了事实上的基础.
Resumo:
O adensamento da cultura do algodão aumenta a competição entre plantas por recursos, como luz, nutrientes e água; logo, o período de florescimento é reduzido e, consequentemente, a marcha de acúmulo de matéria seca é alterada. O objetivo deste trabalho foi determinar a marcha de absorção de N, P e K pelo algodoeiro, identificando a época de maior absorção e a quantidade absorvida e exportada em espaçamentos adensado (48 cm - 20,58 plantas m-2), intermediário (75 cm - 13,30 plantas m-2) e convencional (96 cm - 10,39 plantas m-2). Foram amostradas três plantas úteis por parcela aos 46, 69, 99, 139, 148 e 166 dias após a emergência (DAE), em que foram determinados o acúmulo de matéria seca, N, P e K. O acúmulo de matéria seca nas plantas cultivadas no espaçamento de 48 cm foi maior no início do desenvolvimento, igualando-se às demais ao final do ciclo, o que resultou em maior acúmulo de N entre os 69 e 99 DAE, no menor espaçamento. O adensamento antecipa o pico de absorção de nutrientes, sugerindo a antecipação das adubações de cobertura com N e K no algodoeiro cultivado nesse sistema. Para condições de fertilidade média/alta, a dose de nutrientes a ser aplicada não precisaria ser alterada em função do aumento da densidade de plantas, pois não há variação nas quantidades de N, P e K exportados por kg de algodão produzido, em fibra ou em caroço.
Resumo:
It is known that the transmission of hospital infections, whether environmental or cross infection, is facilitated by the enhanced survival of microorganisms on dry surfaces that is caused by the presence of biological fluids. To demonstrate the need for care with bodily substances in the routine of cleaning, this study evaluated the influence of some body fluids (blood, urine and artificial saliva), deposited in the same way on various surfaces and allowed to dry, on the survival of Staphylococcus aureus (ATCC 25923). Blood was able to preserve bacterial viability for up to 72 days when deposited on ceramic flooring. Fabric of cotton fiber allowed longer survival than synthetic fabric. These results show that the composition of biological fluid and type of support influence bacterial survival in normal conditions.
Resumo:
The aim of this study was to evaluate the in vitro growth of Cattleya loddigesii in alternative agents to agar with starch and physical matrix with acclimatization of regenerated plants. Protocorms with 90 days after sowing (0.5 cm of length) were subcultured in 1/2 MS culture medium among the treatments consisting of: agar 7 g L-1 (T1, which corresponds the control), agar 3,5 g L-1 with cassava starch 30 g L-1 (T2), cassava starch 60 g L-1 (T3), cotton fiber (T4) and chopped polyurethane foam (T5). Plantlets were retained in these treatments for over 150 days, and at the end of in vitro culture, were analyzed by their biometric data and acclimatized in a greenhouse during 120 days and evaluated the survival and relative growth rate (RGR). The substrate comprising of chopped polyurethane foam (T5) showed greater efficiency for growth in vitro and also increased survival rate, while substrate cassava starch (T3) provided delay for plantlet growth. Therefore, chopped polyurethane foam is recommended because of low cost and suitable characteristics for the propagation of Cattleya loddigesii.
Resumo:
Cellobiohydrolases hydrolyze cellulose releasing cellobiose units. They are very important for a number of biotechnological applications, such as, for example, production of cellulosic ethanol and cotton fiber processing. The Trichoderma cellobiohydrolase I (CBH1 or Cel7A) is an industrially important exocellulase. It exhibits a typical two domain architecture, with a small C-terminal cellulose-binding domain and a large N-terminal catalytic core domain, connected by an O-glycosylated linker peptide. The mechanism by which the linker mediates the concerted action of the two domains remains a conundrum. Here, we probe the protein shape and domain organization of the CBH1 of Trichoderma harzianum (ThCel7A) by small angle X-ray scattering (SAXS) and structural modeling. Our SAXS data shows that ThCel7A linker is partially-extended in solution. Structural modeling suggests that this linker conformation is stabilized by inter- and intra-molecular interactions involving the linker peptide and its O-glycosylations. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA