82 resultados para COTESIA-MARGINIVENTRIS
Resumo:
Spodoptera frugiperda is a pest of great economic importance in the Americas. It is attacked by several species of parasitoids, which act as biological control agents. Parasitoids are morphologically identifiable as adults, but not as larvae. Laboratory rearing conditions are not always optimal to rear out parasitic wasps from S. frugiperda larvae collected from wild populations, and it frequently happens that parasitoids do not complete their life cycle and stop developing at the larval stage. Therefore, we explored ways to identify parasitoid larvae using molecular techniques. Sequencing is one possible technique, yet it is expensive. Here we present an alternate, cheaper way of identifying seven species of parasitoids (Cotesia marginiventris, Campoletis sonorensis, Pristomerus spinator, Chelonus insularis, Chelonus cautus, Eiphosoma vitticolle and Meteorus laphygmae) using PCR amplification of COI gene followed by a digestion with a combination of four restriction endonucleases. Each species was found to exhibit a specific pattern when the amplification product was run on an agarose gel. Identifying larvae revealed that conclusions on species composition of a population of parasitic wasps can be biased if only the emerging adults are taken into account.
Resumo:
In response to herbivore attack, plants release herbivore-induced plant volatiles (HIPVs) that represent important chemical cues for herbivore natural enemies. Additionally, HIPVs have been shown to mediate other ecological interactions with herbivores. Differently from natural enemies that are generally attracted to HIPVs, herbivores can be either attracted or repelled depending on several biological and ecological parameters. Our study aimed to assess the olfactory response of fall armyworm-mated female moths toward odors released by mechanically and herbivore-induced corn at different time intervals. Results showed that female moths strongly respond to corn volatiles, although fresh damaged corn odors (0-1 h) are not recognized by moths. Moreover, females preferred volatiles released by undamaged plant over herbivore-induced plants at 5-6 h. This preference for undamaged plants may reflect an adaptive strategy of moths to avoid competitors and natural enemies for their offspring. We discussed our results based on knowledge about corn volatile release pattern and raise possible explanations for fall armyworm moth behavior.
Resumo:
Herbivore-attacked plants produce specific volatile substances that represent important cues for host finding by natural enemies. The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a voracious herbivore and usually feed on maize in all periods of the day. Given that plant needs light to synthesize de novo herbivore-induced volatiles, volatile blend may be changed depending on time of the day the plant is induced, what could interfere in natural enemy foraging. In this sense, the current study aimed to investigate differential attractiveness of maize elicited by fall armyworm regurgitant under light and dark conditions to its specialist larval parasitoid Campoletis flavicincta (Ashmead) (Hymenoptera: Ichneumonidae). All bioassays were conducted in Y-tube olfactometer to assess parasitoid response to odors from undamaged maize, mechanical damage, and regurgitant-treated plants at 0-1, 5-6, and 24-25 h after induction. The results showed that na < ve wasps were attracted to volatiles emitted by nocturnal regurgitant-treated maize at 5-6 h, but not to odors from diurnal regurgitant-treated plants. The differential attractiveness is likely due to blend composition as nocturnal regurgitant-treated plants emit aromatic compounds and the homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene in larger amounts than diurnal-treated plants.
Resumo:
Background: Volatiles emitted by herbivore-infested plants are highly attractive to parasitoids and therefore have been proposed to be part of an indirect plant defense strategy. However, this proposed function of the plant-provided signals remains controversial, and it is unclear how specific and reliable the signals are under natural conditions with simultaneous feeding by multiple herbivores. Phloem feeders in particular are assumed to interfere with plant defense responses. Therefore, we investigated how attack by the piercing-sucking cicadellid Euscelidius variegatus influences signaling by maize plants in response to the chewing herbivore Spodoptera littoralis.Results: The parasitoid Cotesia marginiventris strongly preferred volatiles of plants infested with its host S. littoralis. Overall, the volatile emissions induced by S. littoralis and E. variegatus were similar, but higher levels of certain wound-released compounds may have allowed the wasps to specifically recognize plants infested by hosts. Expression levels of defense marker genes and further behavioral bioassays with the parasitoid showed that neither the physiological defense responses nor the attractiveness of S. littoralis infested plants were altered by simultaneous E. variegatus attack.Conclusions: Our findings imply that plant defense responses to herbivory can be more robust than generally assumed and that ensuing volatiles convey specific information about the type of herbivore that is attacking a plant, even in complex situations with multiple herbivores. Hence, the results of this study support the notion that herbivore-induced plant volatiles may be part of a plant's indirect defense stratagem. © 2010 Erb et al; licensee BioMed Central Ltd.
Resumo:
BACKGROUND Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. RESULTS The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. CONCLUSION Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry
Resumo:
Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.
Resumo:
Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates antiherbivore defenses in the Solanaceae, but in other plant families, peptides with analogous activity have remained elusive. In the current study, we demonstrate that a member of the maize (Zea mays) plant elicitor peptide (Pep) family, ZmPep3, regulates responses against herbivores. Consistent with being a signal, expression of the ZmPROPEP3 precursor gene is rapidly induced by Spodoptera exigua oral secretions. At concentrations starting at 5 pmol per leaf, ZmPep3 stimulates production of jasmonic acid, ethylene, and increased expression of genes encoding proteins associated with herbivory defense. These include proteinase inhibitors and biosynthetic enzymes for production of volatile terpenes and benzoxazinoids. In accordance with gene expression data, plants treated with ZmPep3 emit volatiles similar to those from plants subjected to herbivory. ZmPep3-treated plants also exhibit induced accumulation of the benzoxazinoid phytoalexin 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside. Direct and indirect defenses induced by ZmPep3 contribute to resistance against S. exigua through significant reduction of larval growth and attraction of Cotesia marginiventris parasitoids. ZmPep3 activity is specific to Poaceous species; however, peptides derived from PROPEP orthologs identified in Solanaceous and Fabaceous plants also induce herbivory-associated volatiles in their respective species. These studies demonstrate that Peps are conserved signals across diverse plant families regulating antiherbivore defenses and are likely to be the missing functional homologs of systemin outside of the Solanaceae.
Resumo:
The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.
Resumo:
Koinobiont parasitoids use several strategies to regulate the host`s physiological processes during parasitism. Although many aspects of host-parasitoid interactions have been explored, studies that attempted to assess the effects of parasitism on the availability of inorganic elements in the host are virtually nonexistent. Therefore, we aimed to evaluate the effects of parasitism on the concentrations of inorganic elements in the fat bodies of larvae of Diatraea saccharalis (Lepidoptera: Crambidae) during the development of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae), by using total reflection X-ray fluorescence (TXRF). TXRF analysis allowed comparisons of the changes in the availability of the elements P. S. K, Ca, Cr, Fe, Ni, Cu, and Zn in the fat body tissues of D. saccharalis larvae parasitized by C. flavipes. Overall, the concentration of inorganic elements was higher early in parasitoid development (1 and 3 days after parasitism) compared to non-parasitized larvae, but much lower towards the end of parasitoid development (7 and 9 days after parasitism). Ca, K, and S were reduced after the fifth day of parasitism, which affected the total abundance of inorganic elements observed in the fat bodies of the parasitized hosts. The regulatory mechanisms or pathological effects related to the observed variation of the host inorganic elements induced by the parasitoid remain unknown, but there might be a strategy to make these elements available to the parasitoid larvae at the end of their development, when higher metabolic activity of the host fat body is required to sustain parasitoid growth. The observed variation of the host`s inorganic elements could also be related to the known effects of parasitism on the host`s immune response. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The koinobiont Cotesia flavipes responds to and is influenced by biochemical changes in the host hemolymph composition, Diatraea saccharalis. Changes in the composition of macronutrients may occur due to the hosts own development or by changes induced after parasitization. These changes occur to facilitate parasitoid invasion and to make the host internal environment suitable to parasitoid immature development. Therefore, changes in the availability of stored and circulating nutrients may correlate with the nutritional requirements of specific parasitoid immature stages. In here, we describe changes in the biochemical composition of parasitized and control larvae at different stages of parasitoid development to gain information on C flavipes host regulation and on its quantitative immature nutritional requirements. Total proteins, lipids and carbohydrates free in the hemolymph or stored in host fat bodies, and the SDS-PAGE protein profile of the hemolymph were evaluated in control and parasitized 6th instar during the whole parasitoid development. Changes in the total protein available in the host hemolymph were detected soon after parasitization, but carbohydrate and lipids were observed to differ only towards parasitoid larvae egression. Although C. flavipes affected the availability of all macronutrients observed in the host hemolymph, lipids and proteins stored in the host fat bodies were unaffected. However, carbohydrate concentration at the end of parasitoid larval development was much lower in parasitized than in control larvae at the same stage of development. SDS-PAGE analysis indicated C flavipes up-regulated two host proteins (125 and 48 kDa) and released two parasitism-specific proteins towards the end of parasitoid larval development. We provide a discussion on the role these changes may have on the process of host regulation and their possible requirement to sustain parasitoid development. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The Cotesia rubecula polydnavirus gene, CrV1, is expressed in a highly transient fashion. Within four hours after egg deposition and virus infection, tissues of the host caterpillar, Pieris rapae, express high levels of the transcript. Twelve hours after infection no transcripts are visible. We have previously shown that the CrV1 secreted protein is mainly produced in host haemocytes. In haemocytes, immune functions such as phagocytosis and cell spreading are abolished by destabilization of the cell cytoskeleton. To test whether the observed down-regulation of CrV1 transcripts is mediated by transcriptional control or by other factors, such as the disruption of cytoskeleton in CrV1-inactivated cells, we cloned the promoter and the 3' untranslated region of the CrV1 gene to study CrV1 expression. The promoter region of the CrV1 gene was cloned into baculovirus expression systems along with the CAT reporter gene. Molecular analyses showed that the CAT gene under the control of CrV1 promoter is expressed as early as 2 h post infection and continues until late phase of infection suggesting that down-regulation of CrV1 expression in host haemocytes is perhaps mediated by post-transcriptional mechanisms.
Resumo:
Polydnaviruses are essential for the survival of many Ichneumonoid endoparasitoids, providing active immune suppression of the host in which parasitoid larvae develop. The Cotesia rubecula bracovirus is unique among polydnaviruses in that only four major genes are detected in parasitized host ( Pieris rapae) tissues, and gene expression is transient. Here we describe a novel C. rubecula bracovirus gene (CrV3) encoding a lectin monomer composed of 159 amino acids, which has conserved residues consistent with invertebrate and mammalian C-type lectins. Bacterially expressed CrV3 agglutinated sheep red blood cells in a divalent ion-dependent but Ca2+-independent manner. Agglutination was inhibited by EDTA but not by biological concentrations of any saccharides tested. Two monomers of similar to14 and similar to17 kDa in size were identified on SDS-PAGE in parasitized P. rapae larvae. The 17-kDa monomer was found to be an N-glyscosylated form of the 14-kDa monomer. CrV3 is produced in infected hemocytes and fat body cells and subsequently secreted into hemolymph. We propose that CrV3 is a novel lectin, the first characterized from an invertebrate virus. CrV3 shows over 60% homology with hypothetical proteins isolated from polydnaviruses in two other Cotesia wasps, indicating that these proteins may also be C-type lectins and that a novel polydnavirus lectin family exists in Cotesia-associated bracoviruses. CrV3 is probably interacting with components in host hemolymph, resulting in suppression of the Pieris immune response. The high similarity of CrV3 with invertebrate lectins, as opposed to those from viruses, may indicate that some bracovirus functions were acquired from their hosts.
Resumo:
Insects are important vectors of diseases with remarkable immune defense capabilities. Hymenopteran endoparasitoids are adapted to overcome the host defense system and, therefore, are useful sources of immune-suppressing proteins. Not much is known about venom proteins in endoparasitoids, especially those that have a functional relationship with polydnaviruses (PDVs). Here, we describe the isolation and characterization of a small venom protein (Vn4.6) from an endoparositoid, Cotesia rubecula, which interferes with the activation of the host hemolymph prophenoloxidose. The coding region for Vn4.6 is located upstream in the opposite direction of a gene coding for a C rubecula PDV-protein (Crp32). Arch. Insect Biochem. Physiol. 53:92-100, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
The gregarious braconid wasp Cotesia congregata parasitizes host larvae of Manduca sexta, and several other sphingid species. Parasitism induces host immunosuppression due to the disruptive action of the wasp's polydnavirus (PDV) on host blood cells. During the initial stages of parasitism, these cells undergo apoptosis followed by cell clumping, which clears the hemolymph of a large number of cells. In this study, the persistence and expression of Cotesia congregata PDV (CcPDV) were examined using Southern and Nor-them blots, respectively. Digoxygenin-labelled total polydnaviral DNA was used to probe genomic DNA isolated from fat body and brains of hosts with emerged wasps taken 6 days following egress of the parasitoids, and significant cross-hybridization between the host fat body genomic DNA with viral DNA was seen. Thus, the virus persists in the host for the duration of parasitism. even during the post-emergence period, and may even be integrated in the host caterpillar DNA. Viral gene expression was examined using Northern blots and probes to the Cotesia rubecula CrV1 homolog, and the CrV1-like mRNAs were expressed as early as 4 h post-parasitization for at least 72 h and faint hybrization is even seen at the time the wasps eclose. In contrast, in Pieris rapae larvae the CrV1 transcript is expressed only for a brief time, during which time hemocyte function is disrupted. The effect is transitory, and hemocytes regain their normal functions after the parasites emerge as first instars. The genome of CcPDV contains one copy of the CrV1-like homolog as shown on Southern blots of viral genomic DNA. In conjunction with our earlier studies of the PDV-encoded early protein 1, the current work suggests multiple viral transcripts are produced following parasitization of the host. and likely target host hemocytes to induce their apoptosis, thereby preventing encapsulation of the parasitoid's eggs. Whether viral DNAs are integrated in the host's genomic DNA remains to be proven, but our results provide preliminary evidence that viral DNAs are detected in the host's fat body cells examined at the time of wasp ernergence and several days later. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Resources can be aggregated both within and between patches. In this article, we examine how aggregation at these different scales influences the behavior and performance of foragers. We developed an optimal foraging model of the foraging behavior of the parasitoid wasp Cotesia rubecula parasitizing the larvae of the cabbage butterfly Pieris rapae. The optimal behavior was found using stochastic dynamic programming. The most interesting and novel result is that the effect of resource aggregation within and between patches depends on the degree of aggregation both within and between patches as well as on the local host density in the occupied patch, but lifetime reproductive success depends only on aggregation within patches. Our findings have profound implications for the way in which we measure heterogeneity at different scales and model the response of organisms to spatial heterogeneity.