973 resultados para CONTRIBUTES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In order to maintain cellular viability and genetic integrity cells must respond quickly following the induction of cytotoxic double strand DNA breaks (DSB). This response requires a number of processes including stabilisation of the DSB, signalling of the break and repair. It is becoming increasingly apparent that one key step in this process is chromatin remodelling. Results: Here we describe the chromodomain helicase DNA-binding protein (CHD4) as a target of ATM kinase. We show that ionising radiation (IR)-induced phosphorylation of CHD4 affects its intranuclear organization resulting in increased chromatin binding/retention. We also show assembly of phosphorylated CHD4 foci at sites of DNA damage, which might be required to fulfil its function in the regulation of DNA repair. Consistent with this, cells overexpressing a phospho-mutant version of CHD4 that cannot be phosphorylated by ATM fail to show enhanced chromatin retention after DSBs and display high rates of spontaneous damage. Conclusion: These results provide insight into how CHD4 phosphorylation might be required to remodel chromatin around DNA breaks allowing efficient DNA repair to occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Studies that compare Indigenous Australian and non-Indigenous patients who experience a cardiac event or chest pain are inconclusive about the reasons for the differences in-hospital and survival rates. The advances in diagnostic accuracy, medication and specialised workforce has contributed to a lower case fatality and lengthen survival rates however this is not evident in the Indigenous Australian population. A possible driver contributing to this disparity may be the impact of patient-clinician interface during key interactions during the health care process. Methods/Design: This study will apply an Indigenous framework to describe the interaction between Indigenous patients and clinicians during the continuum of cardiac health care, i.e. from acute admission, secondary and rehabilitative care. Adopting an Indigenous framework is more aligned with Indigenous realities, knowledge, intellects, histories and experiences. A triple layered designed focus group will be employed to discuss patient-clinician engagement. Focus groups will be arranged by geographic clusters i.e. metropolitan and a regional centre. Patient informants will be identified by Indigenous status (i.e. Indigenous and non-Indigenous) and the focus groups will be convened separately. The health care provider focus groups will be convened on an organisational basis i.e. state health providers and Aboriginal Community Controlled Health Services. Yarning will be used as a research method to facilitate discussion. Yarning is in congruence with the oral traditions that are still a reality in day-to-day Indigenous lives. Discussion: This study is nestled in a larger research program that explores the drivers to the disparity of care and health outcomes for Indigenous and non-Indigenous Australians who experience an acute cardiac admission. A focus on health status, risk factors and clinical interventions may camouflage critical issues within a patient-clinician exchange. This approach may provide a way forward to reduce the appalling health disadvantage experienced within the Indigenous Australian communities. Keywords: Patient-clinician engagement, Qualitative, Cardiovascular disease, Focus groups, Indigenous

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence suggests that chromatin modifications have important roles in modulating constitutive or alternative splicing. Here we demonstrate that the PWWP domain of the chromatin-associated protein Psip1/Ledgf can specifically recognize tri-methylated H3K36 and that, like this histone modification, the Psip1 short (p52) isoform is enriched at active genes. We show that the p52, but not the long (p75), isoform of Psip1 co-localizes and interacts with Srsf1 and other proteins involved in mRNA processing. The level of H3K36me3 associated Srsf1 is reduced in Psip1 mutant cells and alternative splicing of specific genes is affected. Moreover, we show altered Srsf1 distribution around the alternatively spliced exons of these genes in Psip1 null cells. We propose that Psip1/p52, through its binding to both chromatin and splicing factors, might act to modulate splicing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of uropathogenic E. coli (UPEC) are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. In this study, we identified a new AT-encoding gene, termed upaH, present in a 6.5-kb unannotated intergenic region in the genome of the prototypic UPEC strain CFT073. Cloning and sequencing of the upaH gene from CFT073 revealed an intact 8.535-kb coding region, contrary to the published genome sequence. The upaH gene was widely distributed among a large collection of UPEC isolates as well as the E. coli Reference (ECOR) strain collection. Bioinformatic analyses suggest β-helix as the predominant structure in the large N-terminal passenger (α) domain and a 12-strand β-barrel for the C-terminal β-domain of UpaH. We demonstrated that UpaH is expressed at the cell surface of CFT073 and promotes biofilm formation. In the mouse UTI model, deletion of the upaH gene in CFT073 and in two other UPEC strains did not significantly affect colonization of the bladder in single-challenge experiments. However, in competitive colonization experiments, CFT073 significantly outcompeted its upaH isogenic mutant strain in urine and the bladder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine has been defined as a common disabling primary headache disorder. Epidemiology studies have provided with the undeniable evidence of genetic components as active players in the development of the disease under a polygenic model in which multiple risk alleles exert modest individual effects. Our objective was to test the contribution of a polygenic effect to migraine risk in the Norfolk Island population using a panel of SNPs reported to be disease associated in published migraine GWAS. We also investigated whether individual SNPs were associated with gene expression levels measured in whole-blood. Polygenic scores were calculated in a total of 285 related individuals (74 cases, 211 controls) from the Norfolk Island using 51 SNPs previously reported to be associated with migraine in published GWAS. The association between polygenic score and migraine case-control status was tested using logistic regression. Results indicate that a migraine polygenic risk score was associated with migraine case-control status in this population (P=0.016). This supports the hypothesis that multiple SNPs with weak effects collectively contribute to migraine risk in this population. Amongst the SNPs included in the polygenic model, 4 were associated with the expression of the USMG5 gene, including rs171251 (P = 0.012). Results from this study provide evidence for a polygenic contribution to migraine risk in an isolated population and highlight specific SNPs that regulate the expression of USMG5, a gene critical for mitochondrial function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci6 and pathway analyses7, 8, 9—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose Stroke is a multifactorial disease that may be associated with aberrant DNA methylation profiles.We investigated epigenetic dysregulation for the MTHFR gene among ischaemic stroke patients. Methods Cases (n=297) and controls (n=110) were recruited after obtaining signed written informed consent, following a screening process against the inclusion/exclusion criteria. Serum vitamin metabolites (folate, vitamin B12 and homocysteine) were determined using immunoassays and methylation profiles for CpGs A and B in the MTHFR gene were determined using bisulfitepyrosequencing method. Results Methylation of MTHFR significantly increased the susceptibility risk for ischemic stroke. In particular, CpG A outperformed CpG B in mediating folate and vitamin B12 levels to increase ischemic stroke susceptibility risks by 4.73 fold. CpGs A and B were not associated with either serum homocysteine levels or ischemic stroke severity. Conclusion CpG A is a potential epigenetic marker in mediating serum folate and vitamin B12 to contribute to ischemic stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The significance of cannibalism in the diet of juvenile pond-cultured blue swimmer crabs (Portunus pelagicus (L.)) was investigated using dual stable isotope analysis of carbon and nitrogen. In a laboratory feeding experiment, δ15N demonstrated a constant trophic shift (Δδ15N ≈+ 1.6‰), and therefore seemed to be a reliable indicator for assessing trophic position for P. pelagicus. This agrees with previously reported trends. Difference in growth rate did not seem to influence δ15N values. In contrast, δ13C did not display consistent shifts between trophic levels (range of Δδ13C: + 1 to + 1.7‰). The results from the pond experiment showed that larger individuals had a more enriched δ15N than smaller individuals, which, when compared to the results from the laboratory experiment, indicates that larger individuals were at a higher trophic level. This is most likely due to cannibalism prevailing in the pond rather than a direct result of faster growth rate. Cannibalistic behaviour might further increase growth, resulting in the observed positive correlation between size and δ15N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The gene encoding for uncoupling protein-1 (UCP1) is considered to be a candidate gene for type 2 diabetes because of its role in thermogenesis and energy expenditure. The objective of the study was to examine whether genetic variations in the UCP1 gene are associated with type 2 diabetes and its related traits in Asian Indians. Methods: The study subjects, 810 type 2 diabetic subjects and 990 normal glucose tolerant (NGT) subjects, were chosen from the Chennai Urban Rural Epidemiological Study (CURES), an ongoing population-based study in southern India. The polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. Results: The three polymorphisms, namely -3826A -> G, an A -> C transition in the 5'-untranslated region (UTR) and Met229Leu, were not associated with type 2 diabetes. However, the frequency of the A-C-Met (-3826A -> G-5'UTR A -> C-Met229Leu) haplotype was significantly higher among the type 2 diabetic subjects (2.67%) compared with the NGT subjects (1.45%, P < 0.01). The odds ratio for type 2 diabetes for the individuals carrying the haplotype A-C-Met was 1.82 (95% confidence interval, 1.29-2.78, P = 0.009). Conclusions: The haplotype, A-C-Met, in the UCP1 gene is significantly associated with the increased genetic risk for developing type 2 diabetes in Asian Indians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two subunits of eukaryotic RNA polymerase II, Rpb7 and Rpb4, form a subcomplex that has counterparts in RNA polymerases I and III. Although a medium resolution structure has been solved for the 12-subunit RNA polymerase II, the relative contributions of the contact regions between the subcomplex and the core polymerase and the consequences of disrupting them have not been studied in detail. We have identified mutations in the N-terminal ribonucleoprotein-like domain of Saccharomyces cerevisiae Rpb7 that affect its role in certain stress responses, such as growth at high temperature and sporulation. These mutations increase the dependence of Rpb7 on Rpb4 for interaction with the rest of the polymerase. Complementation analysis and RNA polymerase pulldown assays reveal that the Rpb4 center dot Rbp7 subcomplex associates with the rest of the core RNA polymerase II through two crucial interaction points: one at the N-terminal ribonucleoprotein-like domain of Rpb7 and the other at the partially ordered N-terminal region of Rpb4. These findings are in agreement with the crystal structure of the 12-subunit polymerase. We show here that the weak interaction predicted for the N-terminal region of Rpb4 with Rpb2 in the crystal structure actually plays a significant role in interaction of the subcomplex with the core in vivo. Our mutant analysis also suggests that Rpb7 plays an essential role in the cell through its ability to interact with the rest of the polymerase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages regulate cell fate decisions during microbial challenges by carefully titrating signaling events activated by innate receptors such as dectin-1 or Toll-like receptors (TLRs). Here, we demonstrate that dectin-1 activation robustly dampens TLR-induced proinflammatory signature in macrophages. Dectin-1 induced the stabilization of beta-catenin via spleen tyrosine kinase (Syk)-reactive oxygen species (ROS) signals, contributing to the expression of WNT5A. Subsequently, WNT5A-responsive protein inhibitors of activated STAT (PIAS-1) and suppressor of cytokine signaling 1 (SOCS-1) mediate the downregulation of IRAK-1, IRAK-4, and MyD88, resulting in decreased expression of interleukin 12 (IL-12), IL-1 beta, and tumor necrosis factor alpha (TNF-alpha). In vivo activation of dectin-1 with pathogenic fungi or ligand resulted in an increased bacterial burden of Mycobacteria, Klebsiella, Staphylococcus, or Escherichia, with a concomitant decrease in TLR-triggered proinflammatory cytokines. All together, our study establishes a new role for dectin-1-responsive inhibitory mechanisms employed by virulent fungi to limit the proinflammatory environment of the host.