871 resultados para COMPLEXING AGENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective extraction-separation of yttrium(Ill) from heavy lanthanides into 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim][PF6]) containing Cyanex 923 was achieved by adding a water-soluble complexing agent (EDTA) to aqueous phase. The simple and environmentally benign complexing method was proved to be an effective strategy for enhancing the selectivity of [C(n)mim] [PF6]/[Tf2N]-based extraction system without increasing the loss of [C(n)mim](+). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective extraction of yttrium front heavy lanthanide by liquid-liquid extraction using CA-100 in the presence of the complexing agent, such as EDTA, DTPA, and HEDTA was investigated. The extraction of heavy lanthanide in the present of the complexing agent was Suppressed when compared to that of Y because of the masking effect, but the selective extraction of Y was enhanced. All complexing agents formed 1: 1 complex with rare earth elements (RE), and only free rare earth ions could take part in the extraction. The condition for separation was obtained by exploring the effects of the complexing agent concentration, the extractant concentration, pH and the equilibration time on the extraction of the heavy rare earth elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective separation of Y from yttrium solution containing small heavy rare earth (HRE) impurities (Ho, Er, Tm, Yb, Lu) by liquid-liquid extraction using CA-100 in the presence of a water-soluble complexing agent of ethylenediaminetetraacetic acid (EDTA) was experimentally studied at 298K. Experiments were carried Out in two feeds, Feed-I: [RE](f) = 4.94 x 10(-3) M, Y = 98.5%, HRE (Ho, Er, Tm, Yb, Lu) = 1.5%; Feed-II: [RE](f) = 4.94 x 10(-3) M, Y = 99.9%, HRE (Ho, Er, Tm, Yb, Lu) = 0.1%, as a function of equilibrium pH (pH(eq)), the concentration ratio of [EDTA]:[HRE impurities]. It was shown that the extraction of HRE in the presence of EDTA was suppressed when compared to that of Y because of the masking effect, while the selective extraction of Y was enhanced and the separation factors increased to maximum at appropriate condition for Feed-I: Y/Ho = 1.53, Y/Er = 3.09, Y/Tm = 5.61, Y/Yb = 12.04, Y/Lu = 27.51 at pH 4.37 and [EDTA]:[HRE impurities] = 4: 1, for Feed-II: Y/Ho = 1.32, Y/Er = 1.91, Y/Tm = 2.00, Y/Yb = 3.05, Y/Lu = 3.33 at pH 4.42 and [EDTA]: [HRE impurities] = 8:1. The separation and purification of Y by this method was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes the incorporation of a complexing agent, dithiooxamide, into microcrystalline cellulose for use in the pre-concentration of Cu(II) and Cd(II) ions from aqueous samples. The FTIR spectrum of the adsorbent exhibited an absorption band in the region of 800 cm-1, which confirmed the binding of the silylating agent to the matrix. Elemental analysis indicated the amount of 0.150 mmol g-1 of the complexing agent. The adsorption data were fit to the modified Langmuir equation, and the maximum amount of metal species extracted from the solution, Ns, was determined to be 0.058 and 0.072 mmol g-1 for Cu(II) and Cd(II), respectively. The covering fraction φ, which was 0.39 and 0.48 for Cu(II) and Cd(II), respectively, was used to estimate a 1:2 (metal:ligand) ratio in the formed complex, and a binding model was proposed based on this information. The adsorbent was applied in the pre-concentration of natural water samples and exhibited an enrichment factor of approximately 50-fold for the species studied, which enabled its use in the analysis of trace metals in aqueous samples. The system was validated by the analysis of certified standard (1643e), and the adsorbent was stable for more than 20 cycles, thus enabling its safe reutilization. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perovskite, single multiferroic bismuth ferrite was prepared by two chemical methods: auto-combustion and soft chemical route. Influence of different fuels and complexing agents and thermal treatment on purity of bismuth ferrite powders and density of bismuth ferrite ceramics were investigated. X-ray diffraction technique (XRD) indicated that optimal temperatures and times for calcination and sintering are 600 degrees C for 2 h and 800 degrees C for 1 h with quenching, respectively. Scanning electron microscopy (SEM) analysis showed that soft route synthesized samples formed softer agglomerates and smaller grains with less secondary phases. Powders and pellets were characterized by Brunauer Emmett Teller (BET) specific surface area analysis, particle size distribution, Fourier transform infrared spectroscopy (FT-IR), dilatometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), dielectric and magnetic measurements. Resistivity and origin of electrical resistance were studied by means of impedance measurements. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A kind of solvent (ionic liquid) impreganated resin (IL-SIR) was developed herein for ameliorating imidazolium-type IL-based liquid-liquid extraction of metal ions. In this study, [C(8)mim][PF6] containing Cyanex923 was immobilized on XAD-7 resin for solid-liquid extraction of rare earth (RE). The solid-liquid extraction contributed to ameliorating mass transfer efficiency, i.e. shortening equilibrium time from 40 min to 20 min, increasing extraction efficiency from 29% to 80%. In additional, the novel IL-SIR could separate Y(III) from Sc(III), Ho(III), Er(III), Yb(III) effectively by adding water-soluble complexing agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xRuxO2-delta (x = 0.05 and 0.10) of 8-10 nm sizes have been synthesized by hydrothermal method using melamine as complexing agent. Compounds have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray analysis (EDX) and their structures have been refined by the Rietveld method.The compounds crystallize in fluorite structure and the composition is Ce1-xRuxO2-x/2 where Ru is in +4 state and Ce is in mixed-valence (+3, +4) state. Substitution of Ru4+ ion in CeO2 activated the lattice oxygen. Ce1-xRuxO2-x/2 reversibly releases 0.22[O] and 0.42[O] for x = 0.05 and 0.10, respectively, which is higher than the maximumpossible OSC of 0.22 [O] observed for Ce0.50Zr0.50O2. Utilization of Higher OSC of Ce1-xRuxO2-delta (x = 0.05 and 0.10) is also reflected in terms of low-temperature CO oxidation with these catalysts, both in the presence and absence of feed oxygen. The Ru4+ ion acts as an active center for reducing molecules (CO, hydrocarbon ``HC'') and oxide ion vacancy acts as an active center for O-2 and NO, leading to low-temperature NO conversion to N-2. Thus due to Ru4+ ion, Ce1-xRuxO2-delta is not just a high oxygen storage material but also shows high activity toward CO, hydrocarbon ``HC'' oxidation, and NO reduction by CO at low temperature with high N-2 selectivity for three-way catalysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce0.67Cr0.33O2.11 was synthesized by hydrothermal method using diethylenetriamine as complexing agent (Chem. Mater. 2008, 20, 7268). Ce0.67Cr0.33O2.11 being the only compound likes UO2+delta to have excess oxygen, it releases a large proportion of its lattice oxygen (0.167 M [O]/mole of compound) at relatively low temperature (465 degrees C) directly and it has been utilized for generation of H-2 by thermo-splitting of water. An almost stoichiometric amount of H-2 (0.152 M/Mole of compound) is generated at much lower temperature (65 degrees C). There is an almost comparable amount of oxygen release and hydrogen generation over this material at very low temperature comparedto other CeO2-MOx (Mn, Fe, Cu, and Ni) mixed-oxide solid solutions (O-2 evolution >= 1300 degrees C and H-2 generation at 1000 degrees C). The reversible nature of oxygen release and intake of this material is attributed to its fluorite Structure and coupling between the Ce4+/Ce3+ and Cr4+/6+/Cr3+ redox couples. Compound shows reversible oxygen release and intake by H2O absorption and subsequent hydrogen release to gain parent structure and hence this material can be utilized for generation of H-2 at very low temperature by thermo-chemical splitting of water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of guar gum with biotite mica has been investigated through adsorption, flotation and electrokinetic measurements. The adsorption densities of guar gum increase with increase of pH and the isotherms exhibit Langmuirian behaviour. Pretreatment of mica with a complexing agent such as EDTA results in a decrease in the adsorption density, highlighting the contribution of metal ions to the adsorption process. An increase in the surface face-to-edge ratio lends to an increase in the adsorption density. The flotation recoveries decrease as a function of pH, complementing the adsorption results. However, polymer depressant ability is reduced in the case of EDTA treated mica, consequent to reduction of metallic sites. Electrokinetic measurements portray conformational rearrangements of macromolecules with the loading, resulting in the shift of the shear plane, further away from the interface. Dissolution experiments indicate release of metal ions from mica, while co-precipitation tests confirm polymer-metal ion interaction in the bulk solution. The adsorption process is governed by hydrogen bonding as well as chemical interaction between guar gum and the surface metal hydroxide groups of mica. (C) 1997 Published by Elsevier Science Ltd.