1000 resultados para COMPLEX-CRYSTALS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relation between the lattice energies and the bulk moduli on binary inorganic crystals was studied, and the concept of lattice energy density is introduced. We find that the lattice energy densities are in good linear relation with the bulk moduli in the same type of crystals, the slopes of fitting lines for various types of crystals are related to the valence and coordination number of cations of crystals, and the empirical expression of calculated slope is obtained. From crystal structure, the calculated results are in very good agreement with the experimental values. At the same time, by means of the dielectric theory of the chemical bond and the calculating method of the lattice energy of complex crystals, the estimative method of the bulk modulus of complex crystals was established reasonably, and the calculated results are in very good agreement with the experimental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a semiempirical method for the evaluation of bond covalency in complex crystals. This method is the extension of the dielectric description theory delivered by Phillips, Van Vechten, Levine, and Tanaka (PVLT) which is mainly suitable for binary crystals. Our method offers the advantage of applicability to a broad class of complex materials. The simplicity of the approach allows a broader class of researchers to access the method easily and to calculate not only the bond covalency but also other useful. properties such as bulk modulus. For a series study, a useful trend can be illustrated and often the prediction of the properties of the-missing one(s) among the series can be possible. Finally, examples are given to show how the method is applied and the procedure is transferable to other complex crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Second order nonlinear optical (NLO) properties of single crystals with complex structures are studied, from the chemical bond viewpoint. Contributions of each type of constituent chemical bond to the total linearity and nonlinearity are calculated from the actual crystal structure, using the chemical bond theory of complex crystals and the modified bond charge model. We have quantitatively proposed certain relationships between the crystal structure and its NLO properties. Several relations have been established from the calculation. Our method makes it possible for us to identify, predict and modify new NLO materials according to our needs. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The second-order nonlinear optical (NLO) tenser coefficients of LiXO3 (X = I; Nb or Ta) type complex crystals have been calculated using the chemical bond theory of complex crystals. Contributions of each type of bond to the total second-order NLO coefficient d(ij) and the linear susceptibility X are quantitatively determined. All tensor values thus calculated are in good agreement with experimental data. The Li-O bonds are found to be an important group in the contributions to the total NLO tenser coefficient, especially for those in LiNbO3 and LiTaO3. The importance of Li-O bonds depends on the environment of Li atom in these crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical bond parameters and the linear and nonlinear optical (NLO) properties of all constituent chemical bonds in Li1-xHxIOx [x (the amount of hydrogen) = 0.0, 0.28, and 0.34] (LHIO) type complex crystals have been investigated from the chemical bond viewpoint, At the same time, the relationship between the crystal structure and its optical properties has been obtained, based on the calculated results of LiIO3, Li0.72H0.28IO3, and Li0.66H0.34IO3. The nonlinear optical properties of LHIO single crystals are found to be particularly sensitive to the H+ impurity concentration. (C) 1998 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Second order nonlinear optical (NLO) tensor coefficients of LiXO3 (X = I, Nb, Ta) type crystals have been evaluated on the basis of the dielectric theory of complex crystals and the modified bond charge model. The current method is capable of calculating single bond contributions to the total second order NLO susceptibility. The tenser values thus calculated agree well with experimental data. By introducing the subformula equation and the concept of the effective charge of one valence electron, we are able to successfully treat such complex crystals as LiXO3 type compounds. In addition, the bond charge expression is modified to a more reasonable form for complex crystals. (C) 1998 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic and quantitative research on the structure-property correlation has been carried out in KH2PO4 (KDP), NH4H2PO4 (ADP) and HIO3, based on the dielectric theory of complex crystals and the Levine bond charge model. We, for the first time, successfully solve the problems in the calculation of the nonlinearities of the complex inorganic nonlinear optical (NLO) crystals, which have O-H bonds in their crystal structures. We do this by introducing the bond-valence equation we have set up, calculating the nonlinear optical tensor coefficients d(ijk) of these three compounds, quantitatively determining the contributions of each type of bond to the total second-order NLO tensor coefficient (d(ijk)) of the crystal, and presenting the bond parameters and the linear properties of each kind of bond. For the first time, the NLO coefficient d(36) for ADP was calculated. All calculated results are in good agreement with experimental data. We found that O-H bonds also play an important role in these crystals, except for in the important anionic groups (PO4 groups and IO3 groups). All the results thus calculated show that our method is useful in evaluating the NLO coefficients of the inorganic NLO crystals containing O-H bonds in their structures, and should be a useful tool toward the future research into new nonlinear optical materials of this kind.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, based on the consideration of covalent behavior of adjacent ions in crystals, a calculation formula of lattice energy was proposed. In which, the concept of ionic effective valence and the empirical formula covalent energy were introduced,

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By using the study of the lattice energy and the structural parameters of binary inorganic crystals, a new parameter reflecting the thermal expansion property has been found, the relation between the linear expansion coefficient and new parameter has been established. A semiempirical method for evaluation of linear expansion coefficient from the lattice energy is presented, and developed to the complex crystals. The estimated values of the linear expansion coefficients of both simple and complex crystals are in good agreement with the experimental values.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An empirical method based on chemical bond theory for the estimation of the lattice energy for ionic crystals has been proposed. The lattice energy contributions have been partitioned into bond dependent terms. For an individual bond, the lattice energy contribution made by it has been separated into ionic and covalent parts. Our calculated values of lattice energies agree well with available experimental and theoretical values for diverse ionic crystals. This method, which requires detailed crystallographic information and elaborate computation, might be extended and possibly yield further insights with respect to bond properties of materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

From the chemical bond viewpoint, the second-order nonlinear optical (NLO) tensor coefficients of some Re-2(MoO4)(3) (ReMO)-type tare earth molybdates, with Re = Pr, Nd, Sm, Eu, Gd, Tb and Dy, have been calculated by using the chemical bond theory of complex crystals and the modified bond charge model. All kinds of constituent chemical bonds are considered in the calculation. The major part of the NLO properties of these ReMO crystals is found from the ReO7 groups. The NLO coefficients of these ReMO crystals decrease with Re from Pr to Dy. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In terms of the theory of chemical bonds on complex crystals(CBCC), the crystal structure and coordination, the chemical bond parameters of a group of ABO(4)-type crystals were calculated in detail, The results show that the relation between the crystal field splitting of Nd3+ ion and the covalency of the crystal is linear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neonatal Fe receptor (FeRn) binds the Fe portion of immunoglobulin G (IgG) at the acidic pH of endosomes or the gut and releases IgG at the alkaline pH of blood. FeRn is responsible for the maternofetal transfer of IgG and for rescuing endocytosed IgG from a default degradative pathway. We investigated how FeRn interacts with IgG by constructing a heterodimeric form of the Fe (hdFc) that contains one FeRn binding site. This molecule was used to characterize the interaction between one FeRn molecule and one Fe and to determine under what conditions FeRn forms a dimer. The hdFc binds one FeRn molecule at pH 6.0 with a K_d of 80 nM. In solution and with FeRn anchored to solid supports, the heterodimeric Fe does not induce a dimer of FeRn molecules. FcRnhdFc complex crystals were obtained and the complex structure was solved to 2.8 Å resolution. Analysis of this structure refined the understanding of the mechanism of the pH-dependent binding, shed light on the role played by carbohydrates in the Fe binding, and provided insights on how to design therapeutic IgG antibodies with longer serum half-lives. The FcRn-hdFc complex in the crystal did not contain the FeRn dimer. To characterize the tendency of FeRn to form a dimer in a membrane we analyzed the tendency of the hdFc to induce cross-phosphorylation of FeRn-tyrosine kinase chimeras. We also constructed FeRn-cyan and FeRn-yellow fluorescent proteins and have analyzed the tendency of these molecules to exhibit fluorescence resonance energy transfer. As of now, neither of these analyses have lead to conclusive results. In the process of acquiring the context to appreciate the structure of the FcRn-hdFc interface, we developed a study of 171 other nonobligate protein-protein interfaces that includes an original principal component analysis of the quantifiable aspects of these interfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a method for estimating the positions of charge transfer (CT) bands in Eu3+-doped complex crystals. The environmental factor ( he) influencing the CT energy is presented. he consists of four chemical bond parameters: the covalency, the bond volume polarization, the presented charge of the ligand in the chemical bond, and the coordination number of the central ion. These parameters are calculated with the dielectric theory of complex crystals. The relationship between the experimental CT energies and calculated environmental factors was established by an empirical formula. The calculated values are in good agreement with the experimental results. Such a relationship was confirmed by detailed analysis. In addition, our method is also useful to predict the charge-transfer position of any other rare earth ion.